Turbo Debugger® for
Windows

Version 3.1

User’s Guide

BORLAND INTERNATIONAL, INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001

R1

Copyright © 1988, 1992 by Borland International. All rights
reserved. All Borland products are tfrademarks or registered
trademarks of Borland International, Inc. Other brand 'and
product names are trademarks or registered trademarks of their
respective holders. Windows, as used in this manual, shall refer to
Microsoft's implementation of a windows system.

10987654321

Introduction 1
New features and changes for version 3.1 . 2
Hardware and software requirements ... 2
A note on terminology 4
Whatsinthemanual 4
How to contact Borland 5
Resources in your package 6
Borland resources 6
Chapter 1 Getting started 9
The distribution disks 9
Onlinetextfiles 9
READMEccoiiiiina.... 10
HELPMELTDW 10
ASMDEBUG.TDW 10
UTILSTDW, 10
Installing TDW 11
Installing TDDEBUG.386 11
TDWINI..... e 12
Hardware debugging 12
Wheretonow? 13

Programmers learning Turbo Pascal .. 13
Turbo Pascal pros; Turbo Debugger

NOVICESoiiiiniinnnnnnnnn. 13
Programmers experienced with Turbo
Debugger 13
Chapter 2 TDW basics 15
Isthereabug? 15
Whereisit? 16
Whatisit? 16
Fixingit 16
What TDW cando foryou 16
What TDW won’tdo 18
How TDW doesit 18
The TDW advantage 18

Menus and dialog boxes 19

Usingthemenus 19
Dialogboxes 20
Knowing whereyouare 21
Localmenus 22
History lessons 24
Automatic name completion 25
Incremental matching 26
Making macros 26
Window shopping 26
Windows from the View menu 27
Breakpoints window 27
Stack window 27
Logwindow 27
Watches window 28
Variables window 28
Module window 28
Filewindow 28
CPUwindow 29
Dump window 29
Registers window 29
Numeric Processor window 29
Execution History window 30
Hierarchy window 30
Windows Messages window 30
Clipboard window 30
Duplicate windows 31
Userscreen 31
Inspector windows 31
The active window 32
Whatsinawindow 32
Working with windows 34
Window hopping 34
Moving and resizing windows ... 35
Closing and recovering windows . 36
Saving your window layout 37
Copying and pasting 37

The Pick dialogbox 37

The Clipboard window 38
Clipboard item types 39

The Clipboard window local
(=3 (15 QP 40
Dynamic updating 40
Tips for using the Clipboard 40
Gettinghelp 41
Onlinehelp 42
Thestatusline 42
Inawindow................... 42
In a menu or dialog box 43
Complete menutree 44
Chapter 3 A quick example 45
The demo program 45
UsingTDW 47
Themenus 47
Thestatusline 48
Thewindows 49
Using the TDDEMOW sample program . 50

Setting breakpoints 51

Using watches 52
Examining simple Pascal data objects . 53
Examining compound Pascal data
objectsl 55
Changing Pascal data values 55
Chapter 4 Starting TDW 59
Preparing programs for debugging 59
Starting TDW 60
Entering command-line options 61
Directly entering command-line
Optionsoiiiiiiiiiin, 61
Indicating command-line options in
TPWINI ...l 61
Things to remember 62
Running TDW 63
Command-lineoptions 63
Loading the configuration file (-¢) 64
Display updating (-d) 64
Getting help -hand-?) 64
Assembler-mode startup (-1) 64
Mouse support (-p) 65

Source code handling (-s)
Starting directory (-t)
Configuration files
The Options menu
The Language command
The Macros menu
Create
Stop Recording
Remove
Delete All
Display Options command
Display Swapping
Integer Format
ScreenLines
Tab Size
Path for Source command
Save Options command
Restore Options command
Returning to Windows
Summary of command-line options

Chapter 5 Controlling program
execution
Examining the current program state ...
The Variables window
The Global pane local menu
Inspect

The Static pane local menu
Inspect

ShOoW ..ot
The Stack window
The Stack window local menu
Inspect
Locals
The Origin local menu command
The Get Info command
Global memory information
Status line messages
TheRUnmenucovvuuuunnn...
Run

GotoCursor 82
Tracelnto 82
StepOver 83
ExecuteTo 83
UntilReturn 83
Animate oo L 84
Back Trace 84
Instruction Trace 84
Arguments 85
ProgramReset 85
The Execution History window 85
Thelocalmenu 86
Inspectl 86
Reverse Execute 86
FullHistory 87
Interrupting program execution 87
Program termination 88
Restarting a debugging session 89
Opening a new program to debug 89
Changing the program arguments 90
Chapter 6 Examining and modifying
data 91
TheDatamenu 92
Inspectl 92
Evaluate/Modify 92
AddWatch................... 95
FunctionReturn 95
Pointing at data objects in source files ... 95
The Watches window e 96
The Watches window local menu 97
Watch ... 97
Editooill 97
Remove 97
Delete Al 97
Inspectl 97
Changeiuii 97
Inspector windows 98
Data Inspector windows 98
ScalarscoooiiiiiiL 98
Pointers 99
Arrays...... ... 100
Records 100

i

Procedures and functions 101
Assembler data Inspector windows .. 101
Scalars............... ... ol 101
Pointers, 102
Arrays............ ...l 102
Structures and unions 103
The Inspector window local menu 104
Range 104
Change 104
Inspectl 104
Descend 105
New Expression 105
TypeCast 105
Chapter 7 Breakpoints 107
The Breakpointsmenu 109
Togglel 109
At oo 109
Changed memory global 109
Expression true global 109
Hardware breakpoint 109
Deleteall 109
The Breakpoints window 110
The Breakpoints window local menu . 110
SetOptions 110
Add ...l 110
Remove 111
Deleteall 111
Inspect L 111
Groupl 112
Groups 112
Add ...l 112
Delete 113
Enable....................... 113
Disable 114

The Breakpoint Options dialog box .. 114
Address 114
GroupID 114
Global 114
Disabled 114
Conditions and Actions 115
Change 115
Add ...l 115
Delete 115

The Conditions and Actions dialog
DOX i e
The condition radio buttons
Always
Changed memory
Expression true
Hardware
The action radio buttons

Log
Enable group
Disable group
Setting conditions and actions
Condition expression
Action expression
Pass count
Customizing breakpoints
Simple breakpoints
Global breakpoints
Changed memory breakpoints
Conditional expressions
Scope of breakpoint expressions ..
Hardware breakpoints
Logging variable values
The Log window
The Log window local menu
Open Log File
Close Log File
Logging
Add Comment
Erase Log
Display Windows Info

Chapter 8 Examining files
Examining program source files
The Module window
The Module window local menu
Inspect
Watch
Module
File
Previous
Line

115
116
116
116
117
117
117
117
117
118
118
118
118
118
119
120
120
120
121
121
122
122
123
123
124
125
125
125
125
125
126
126

127
127
128
129
129
129
129
130
130
130

Searchcciiviin 130
Next ...ovviiiniiiiiniin.. 130
Origin ... 131
GOto . ovviii 131
Examining other disk files 131
The Filewindow 131
The File window local menu 132
GOtO .oviiii i 132
Searchccoovviiii... 133
Next ..., 133
Display Asovviiiiiinnnn. 134
File ... it 134
Chapter 9 Expressions 135
Choosing the language for expression
evaluationl 136

Code addresses, data addresses, and line

numbers ool 136
Accessing symbols outside the current
SCOPE .ottt 137
Scope override tips 139
Overriding scope in Pascal
Pprogramsaon 140
Scope override tips 141
Scopeand DLLs 141
Implied scope for expression
evaluationl 142
Bytelistsl 142
Pascal expressions 143
Symbolsooi 143
Constants and number formats 143
Strings ... 144
Operators and operator precedence . 144
Calling functions and procedures ... 144
Assembler expressions 145
Assembler symbols 145
Assembler constants 145
Assembler operators 146
Formatcontrol 146
Chapter 10 Object-oriented
debugging 149
The Hierarchy window 149
The Object Type List pane 150

The Object Type List pane local

4 11=) (10 150
Inspect 150
1 150
The Hierarchy Tree pane 151
The Hierarchy Tree pane local
MENU ..ottt 151
Object type Inspector windows 151
The object type Inspector window local
MENUS .. .vvttntin it 152
The Object Data Field (top) pane .. 152
Inspect 152
Hierarchy 153
Show Inherited 153
The Object Method (bottom) pane . 153
Inspect 153
Hierarchy 153
Show Inherited 153
Object instance Inspector windows 153
The object instance Inspector window
localmenus 154
Range 155
Changecoovininnnt, 155
Methodscoooolt 155
Show Inherited 155
Inspect, 155
Descendccooiviivinnn. 155
New Expression 155
TypeCast 156
Hierarchy 156
The middle and bottom panes 156
Chapter 11 Using Windows debugging
features 157
Windows features 157
Logging window messages 158
Selecting a window for a standard
Windows application 158

Adding a window selection for a

standard Windows application . 159
Selecting a window for an
ObjectWindows application 159

Obtaining a window handle 159

Specifying a window with

ObjectWindows support
enabled 161
Adding a window with
ObjectWindows support
enabled 161
Deleting a window selection 162
Specifying a message class and
action ...l 162
Adding a messageclass 163
Deleting a message class 165
Window message tips 165
Viewing messages 165

Obtaining memory and module lists . 166
Listing the contents of the global

heapo il 166
Listing the contents of the local
heapl 168
Obtaining a list of modules 168
Debugging dynamic link libraries
L) I) 169
Using the Load Modules or DLLs
dialogbox 170
Changing source modules 170
Working with DLLs and
programs 171
Adding a DLL to the DLLs &
Programslist 172

Setting debug optionsina DLL ... 173
Controlling TDW's loading of DLL

symboltables................... 173
Debugging DLL startup code 173
Converting memory handles to
addresses i 175
Chapter 12 Assembler-level
debugging 177
When source debugging isn’t enough .. 177
TheCPUwindow 178
TheCodepane 180
The disassembler 180
The Register and Flags panes 181
The Selectorpane 181

The Selector pane local menu 182

Selector ... 182

Examine 183
TheDatapane 183
The Stackpane 184
The Dump window 184
The Registers window 184
Chapter 13 Debugging a standard

Pascal application 185

When things don’twork 185
Debuggingstyle 186
Run the whole thing 187
Incremental testing 187
Typesofbugs 187
Generalbugs 188

Hiddeneffects 188

Assuming initialized data 188

Not cleaningup 189

Fenceposterrors 189

Pascal-specificbugs 189

Uninitialized variables 190

Problems with pointers 190

Scope confusion 191

Superfluous semicolons 193

Undefined function return value .. 193
Decrementing Word or Byte

variablesl 194
Ignoring boundary or special cases . 194
Rangeerrors 195
Accuracy testing 196
Testing boundary conditions 196
Invalid datainput 197
Empty datainput 197
Debugging as part of program design .. 197
The sample debugging session 198
Looking forerrors 198
Deciding your plan of attack 199
Starting TDW 200
Moving through the program 200
The Evaluate/Modify dialog box 201
Inspecting 202
Watches ...t 203
Theend.......................... 204

Chapter 14 Debugging an

ObjectWindows
application 205
About the program 205
The Scribble window type definition . 207
Imit 207
WMLButtonDown 207
WMMouseMove 208
WMLButtonUp 208
WMRButtonDown 208
Adding color with
CScribbleWindow 208
thePen......................... 208
Imit ... 209
DoneooovviiiiiiL 209
The pen-color routines 209
WMLButtonDown 209
Creating the application 209
Debugging the program 210
Finding the firstbug 210
Eliminating the alternatives 210
Debugging LineTo 211
Testing thefix 211
Finding the pen colorbug 212
Setting a window breakpoint 212
Interrupting the program with
Ctrl-Alt-SysRq 213
If Ctrl-Alt-SysRq doesn’t work .. 214
Inspecting wParam 214
Testing thefix 215
Finding the off-screen drawing bug . 215
Logging the window messages ... 216
Discovering thebug 216
Fixing thebug 217
Testing thefix 218
Finding the erase-screenbug 218
Analyzing the cause of the bug ... 219
Fixing thebug 219
Testing thefix 219
Appendix A Error and information
messages 221
Dialog box messages 221

Errormessages 228

Vii

Index

245

2.1: What goes in a dialog box
2.2: Global and local menu operations ...
2.3: Clipboard item types 39

2.4: Clipboard local menu commands40
4.1: TDW command-line options 71
11.1: Windows message classes 163

viii

11.2: Format of a global heap list
11.3: Format of a local heap list
11.4: Format of a Windows module list . .169
11.5: DLLs & Programs list dialog box
controls

21:Global and localmenus 23
2.2: A history list in an inputbox 25
2.3: The active window has a double

outline 32
2.4: A typical window 33
2.5:The Pick dialogbox 38
2.6: The Clipboard window 38
2.7: The normal status line 43
2.8: The status line with Alt pressed 43
2.9: The status line with Ctrl pressed 43
2.10: The complete Turbo Debugger menu

tree 44

3.1: The startup screen showing

TDDEMOW 47
3.2: Themenubar 48
3.3: Thestatusline 48
3.4: The Module and Watches windows,

tiled 49

3.5: The program stops after returning from
aprocedureoil 51

3.6: A breakpoint atline 141 52
3.7: A Pascal variable in the Watches
window o il 53
3.8: An Inspector window 54
3.9: Inspectingarecord 55
3.10: The Change dialogbox 56
3.11: The Evaluate/Modify dialog box ...57
4.1: The Display Options dialog box 68
4.2: The Save Options dialog box 70
51: The Variables window 74

5.2: The Local Display dialog box.. 77
5.3: The Stack window
5.4: The Get Info text box
5.5: The Execution History window 86
5.6: The Enter Program Name to Load
dialog box

6.1: The Evaluate/Modify dialog box93
6.2: The Watches window 96
6.3: A Pascal scalar Inspector window ...99

6.4: A Pascal pointer Inspector window .100

6.5: A Pascal array Inspector window .. .100
6.6: A Pascal record Inspector window . .101
6.7: A Pascal procedure Inspector
windowl 101
6.8: An assembler scalar Inspector
window ...l 101
6.9: An assembler pointer Inspector
window ... 102
6.10: An assembler array Inspector
windowo ool 103
6.11: An assembler structure Inspector
window ... 103
7.1: The Breakpoints window 110
7.2: The Edit Breakpoint Groups dialog
box ... 112
7.3: The Add Group dialogbox 113

7.4: The Breakpoint Options dialog box .114
7.5: The Conditions and Actions dialog

bOX oo 116
7.6:The Logwindow 124
8.1: The Module window 128
82: The Filewindow 132

8.3: The File window showing hex data .132

10.1: The Hierarchy window 149
10.2: An object type Inspector window . .151
10.3: An object instance Inspector

windowl 154

11.1: The Windows Messages window for a

standard Windows application158
11.2: The Add Window dialog box for a
standard Windows application159

11.3: The Windows Messages window with
ObjectWindows support enabled ..161

11.4: The Add Window dialog box with
ObjectWindows support enabled ..162

11.5: The Set Message Filter dialog box ..163

11.6: The Windows Information dialog

DOX «iivi i 166
11.7: The Load Modules or DLLs dialog

bOX oo 170
121: The CPU window 178

12.2: The Dump window 184

Turbo Debugger for Windows (TDW) is a state-of-the-art, source-
level debugger designed to work with Borland’s Turbo Pascal for
Windows.

TDW enables you to debug applications you’ve written for
Microsoft Windows, Version 3.0 and higher. It is a Windows
application that runs on the same machine as the Windows
program you're debugging. TDW switches between its own text-
mode screens and your application’s screens as you step through
your application’s code.

Multiple, overlapping windows, a combination of pull-down and
pop-up menus, and mouse support provide a fast, interactive en-
vironment. An online context-sensitive help system provides you
with help during all phases of operation.

Here are just some of TDW's features:

m debugging of Microsoft Windows applications

® full Turbo Pascal and assembler expression evaluation
m configurable screen layout

m assembler/CPU access when needed

m powerful breakpoint and logging facility

m back tracing '

m full support for object-oriented programming in Turbo Pascal
for Windows

m operates in character mode

Infroduction 1

New features and changes for version 3.1

TDW 3.1 has the following enhancements over TDW 2.5:

u The Clipboard lets you copy from windows and paste either
into text entry boxes on dialog boxes or into other windows.
This feature is described on page 37.

m There are new breakpoint features (see Chapter 7) that let you

o set multiple conditions and actions on a breakpoint
o set and remove breakpoints in groups

o set and remove breakpoints on all functions or procedures in
a module

o set and remove breakpoints on all methods in an object type

m International sort orders are supported through the Windows
Language setting. You turn this feature on by using the configu-
ration program TDWINST.EXE (see the file UTILS.TDW).

w The CPU window has a new pane that shows protected mode
selectors and lets you look at the contents of memory locations
referenced by these selectors (see page 181).

m The device driver TDDEBUG.386 provides support for the
Ctrl-Alt-SysRq interrupt key combination. In addition, this device
driver supports the hardware debugging registers of the Intel
80386 processor (and higher). See page 11 for TDDEBUG.386
installation information. See page 123 and the online file
HDWDEBUG.TDW for information on hardware debugging.

m Debugging of DLLs is faster now that TDW simultaneously
loads both the application’s symbol table and the symbol table
of any DLL you explicitly load or whose code you step into (see
page 141).

m Extended graphics mode support is improved.

Hardware and software requirements

TDW requires or supports the following hardware and software:

u TDW has the same hardware and system software require-
ments as Turbo Pascal for Windows.

m TDW supports the following graphics modes and adapters:
CGA, EGA, VGA, Hercules monochrome-graphics, Super VGA

Turbo Debugger for Windows User’s Guide

See the README file for
more information on
TDW.INI and the latest list

See page 5 to find out how
to contact Borland Technical

Introduction

of video drivers.

Support.

(SVGA), and 8514. You can use standard drivers with
everything except SVGA and 8514.

TDW supports SVGA and 8514 adapters through video support
DLLs distributed with TDW. These DLLs support various
adapter cards. You specify a video support DLL in TDW.INI, a
file that’s created in your WINDOWS subdirectory when you
install TDW. To use an SVGA or 8514 DLL with TDW, copy it to
the directory where TDW.EXE resides, then modify the
VideoDLL line in your TDW.INI file to read:

VideoDLL = VGADRIVR.DLL
where VGADRIVR.DLL is the name of the required SVGA DLL.

If you can’t find a DLL that matches your SVGA video adapter,
contact Borland Technical Support to see if you can get one.

m TDW provides its own DLL, TDWIN.DLL, to support Windows

debugging on both Windows 3.0 and Windows 3.1. This DLL
replaces WINDEBUG.DLL and is copied to your hard disk
during installation. The installation program also puts an entry
in the TDW.INII file indicating where this DLL is to be found.
This entry, DebuggerDLL, is in the [TurboDebugger] section of
TDW.INL

For example, if TDWIN.DLL were installed in the
C:\WINDOWS3.1 directory, you would see the following in
TDW.INTI:

[TurboDebugger]
DebuggerDLL=c:\windows3.1\tdwin.d1ll

m To use TDW, you must have Turbo Pascal for Windows. You

must already have compiled your source code into an execut-
able (.EXE or .DLL) file with full debugging information turned
on.

® When you run TDW, you'll need the .EXE file, any DLLs you've

written for it, and the original source files for both. The .EXE
and any .DLL files must be in the same directory. TDW searches
for source files first in the directory where the compiler found
them when it compiled, second in the directory specified in the
Options | Path for Source command, third in the current directo-
ry, and fourth in the directory the .EXE or .DLL file is in.

A note on terminology

For convenience and brevity, we use two terms in this manual in
slightly more generic ways than usual. These terms are module
and argument.

Module Refers to what is usually called a module in C++ and assembler,
but also to what is called a unit in Pascal.

Argument [s used interchangeably with parameter in this manual. This
applies to references to command-line arguments (or parameters),
as well as to arguments (or parameters) passed to functions.

What's in the manual

Here is a brief synopsis of the chapters and appendixes in this
manual:

Chapter 1: Getting started describes the contents of the distri-
bution disk and tells you how to load TDW files into your system.
It also gives you advice on which chapter to go to next, depending
on your level of expertise.

Chapter 2: TDW basics explains the TDW environment, menus,
and windows, and shows you how to respond to prompts and
error messages.

Chapter 3: A quick example leads you through a sample session—

using a Pascal program—that demonstrates many of the powerful
capabilities of TDW.

Chapter 4: Starting TDW shows how to run the debugger from the
command line, when to use command-line options, and how to
record commonly used settings in configuration files.

Chapter 5: Controlling program execution demonstrates the
various ways of starting and stopping your program, as well as
how to restart a session or replay the last session.

Chapter 6: Examining and modifying data explains the unique
capabilities TDW has for examining and changing data inside
your program.

Chapter 7: Breakpoints introduces the concept of actions, and
how they encompass the behavior of what are sometimes referred
to as breakpoints, watchpoints, and tracepoints. Both conditional

4 Turbo Debugger for Windows User's Guide

and unconditional actions are explained, as well as the various
things that can happen when an action is triggered.

Chapter 8: Examining files describes how to examine program
source files, as well as how to examine arbitrary disk files, either
as text or binary data.

Chapter 9: Expressions describes the syntax of Pascal and
assembler expressions accepted by the debugger, as well as the
format control characters used to modify how an expression’s
value is displayed.

Chapter 10 Object-oriented debugging explains the debuggers
special features that let you examine objects in Turbo Pascal for
Windows.

Chapter 11: Using Windows debugging features describes how to
use the TDW features that support debugging of Windows
applications.

Chapter 12: Assembler-level debugging describes the CPU
window. Additional information about this window and about
assembler-level debugging is in the file ASMDEBUG.TDW.

Chapter 13: Debugging a standard Pascal program is an intro-
duction to strategies for effective debugging of your programs.

Chapter 14: Debugging an ObjectWindows application leads you
through a debugging session on a sample Windows program
written using the ObjectWindows class library.

Appendix A: Error and information messages lists all the TDW
prompts and error messages that can occur, with suggestions on
how to respond to them.

How to contact Borland

Introduction

Borland offers a variety of services to answer your questions
about this product. Be sure to send in the registration card;
registered owners are entitled to technical support and may
receive information on upgrades and supplementary products.

Resources in your
package

Borland resources

800-822-4269 (voice)
TechFax

408-439-9096 (modem)
File Download BBS
2400 Baud

Online information services

408-438-5300 (voice)
Technical Support
6a.m. to5p.m. PST

This product contains many resources to help you:

m The manuals provide information on every aspect of the pro-
gram. Use them as your main information source.

m While using the program, you can press F1 for help.

m Some common questions are answered in the file
HELPME!.TDW, located in the DOC subdirectory of your
language compiler directory, and the README file, located in
the main language compiler directory.

Borland Technical Support publishes technical information sheets
on a variety of topics and is available to answer your questions.

TechFax is a 24-hour automated service that sends free technical
information to your fax machine. You can use your Touch Tone
phone to request up to three documents per call.

The Borland File Download BBS has sample files, applications,
and technical information you can download with your modem.
No special setup is required.

Subscribers to the CompuServe, GEnie, or BIX information servic-
es can receive technical support by modem. Use the commands in
the following table to contact Borland while accessing an informa-
tion service.

Service Command
CompuServe GO BORLAND
BIX JOIN BORLAND
GEnie BORLAND

Address electronic messages to Sysop or All. Don’t include your
serial number; messages are in public view unless sent by a
service’s private mail system. Include as much information on the
question as possible; the support staff will reply to the message
within one working day.

Borland Technical Support is available weekdays from 6:00 a.m.
to 5:00 p.m. Pacific time to answer any technical questions you
have about Borland products. Please call from a telephone near

Turbo Debugger for Windows User’s Guide

408-438-5300 (voice)
Customer Service
7 a.m. to 5 p.m. PST

Introduction

your computer, and have the program running. Keep the
following information handy to help process your call:

m product name, serial number, and version number

® the brand and model of any hardware in your system

m operating system and version number (use the DOS command
VER to find the version number)

m contents of your AUTOEXEC.BAT and CONFIG.SYS files
(located in the root directory (\) of your computer’s boot disk)

m the contents of your WIN.INI and SYSTEM.INI files (located in
your Windows directory) for TDW questions

® a daytime phone number where you can be contacted

m if the call concerns a problem, the steps to reproduce the
problem

Borland Customer Service is available weekdays from 7:00 a.m. to
5:00 p.m. Pacific Time to answer any nontechnical questions you

have about Borland products, including pricing information,
upgrades, and order status.

Turbo Debugger for Windows User’s Guide

See the FILELIST.DOC file for
information about the online
files that document subjects
not covered in this manual.

Geffing started

Turbo Debugger for Windows is part of the Turbo Pascal for
Windows package, which consists of a set of distribution disks,
the Turbo Debugger for Windows User’s Guide (this manual), and the
Turbo Pascal for Windows manuals. The distribution disks
contain all the programs, files, and utilities needed to debug pro-
grams written in Turbo Pascal for Windows.

The distribution disks

Online text files

When you install Turbo Pascal for Windows on your system, files
from the distribution disks, including the TDW files, are copied to
your hard disk. Just run INSTALL.EXE, the easy-to-use installa-

tion program on your distribution disks.

For a list of the files on the distribution disks, see the
FILELIST.DOC file on the installation disk.

Chapter 1, Getting started

There are a number of online files the installation program puts
on your hard disk. The two you should definitely look at are
README and FILELIST.DOC. They are accessible on the disk
labeled “Installation Disk,” and are also copied to your main
language directory.

Pascal for Windows edifor or

README

You can use the Turbo

Windows Notepad to access

10

the README file.

HELPME!.TDW

ASMDEBUG.TDW

UTILS.TDW

Use TDSTRIP to prepare
.COM files for debugging.

Additional files that provide information not found in the manual
are HELPME!. TDW (commonly asked questions about TDW),
ASMDEBUG.TDW (debugging of Assembler programs),
UTILS.TDW (descriptions of utilities), and HDWDEBUG.TDW
(hardware debugging). There also might be a file called
MANUAL.TDW describing corrections to this user’s guide. All
these files by default are installed in the DOC subdirectory of
your main language directory.

It's very important that you take the time to look at the README
file before you do anything else with TDW. This file contains last-
minute information that might not be in the manual.

Your installation disk also contains a file called HELPME!.TDW,
which contains answers to problems that users commonly run

into. Consult it if you find yourself having difficulties. The
HELPME!.TDW file discusses:

m the syntactic and parsing differences between TDW and Turbo
Pascal for Windows

m debugging multi-language programs with TDW

m common questions about using TDW with Windows

This file contains information on debugging Turbo Assembler

e arniae Vit maioht alan find the i CPR e £
programs. You mighnt also fina the information in this file helpful

for debugging your inline assembler code.

This file describes the command-line utilities included with TDW.
These utility programs are TDSTRIP, TDUMP, and TDWINST.

Here’s a brief description of each of the TDW utilities:

m TDSTRIP.EXE lets you strip the debugging information (the
symbol table) from your programs without relinking.

A typical use of this utility is to create a .TDS file to use in
debugging a .COM file. Because a .COM file you produce with

Turbo Debugger for Windows User’s Guide

Installing TDW

a compiler has no symbol table information in it, you can debug
it only by doing the following;:

Compile the source code, with debugging information turned
on, into a single-segment .EXE file, then run TDSTRIP on the
.EXE. If the .EXE can be converted to a .COM file, TDSTRIP
produces a .TDS file and a .COM file. You can now debug the
.COM file by using the .TDS file with it.

m TDUMP .EXE displays the contents of object modules and .EXE
files in a readable format.

u TDWINST.EXE lets you customize TDW. Using this utility, you
can permanently set things like the display options and screen
colors.

For a list of all the command-line options available for the TDW
utility programs TDSTRIP.EXE and TDUMP.EXE, just type the
program name and press Enter. For example, to see the command-
line options for TDUMP.EXE, you'd type

TDUMP

To see the command-line options for TDWINST.EXE, type the
program name and use the —? or -h option, then press Enter. For
example, you could type

TDWINST -2

Installing
TDDEBUG.386

Chapter 1, Getting started

The INSTALL.EXE program for Turbo Pascal for Windows also
installs TDW. It creates a program group in the Windows
program manager and creates icons for Turbo Pascal for
Windows and TDW. See the README file for general installation
information.

There’s a file on your installation disks, TDDEBUG.386, that
provides the same functionality as the Windows SDK file
WINDEBUG.386. In addition, it provides support for the
hardware debugging registers of Intel 80386 (and higher)
processors.

The installation program should copy this file to your hard disk
and alter your Windows SYSTEM.INI file so that Windows loads

11

TDW.INI

TDDEBUG.386 instead of WINDEBUG.386. If the installation
program can’t complete this task for you, it tells you. You then
have to do it by hand, as follows: ‘

1. The installation program will have copied TDDEBUG.386
from the installation disks to your hard disk. The standard
directory for this file is C:\TPW. If you move the file to
another directory, substitute that directory in the instructions.

2. With an editor, open the Windows SYSTEM.IN!I file, search for
[386enh], and add the following line to the 386enh section:

device=C:\TPW\tddebug. 386

3. If there’s a line in the 386enh section that loads
WINDEBUG.386, either comment the line out with a
semicolon or delete it altogether. (You can’t have both

TDDEBUG.386 and WINDEBUG.386 loaded at the same
time.)

For example, if you load WINDEBUG.386 from the
CA\WINDOWS directory, the commented-out line would be

;device=c:\windows\windebug.386

TDW has its own initialization file, TDW.INI. This file has settings
for the video driver and the location of the Windows-debugging
DLL TDWIN.DLL. TDW.INI is introduced on page 3 and is
described fully in the README file.

The installation program puts a copy of TDW.INI in the main
Windows directory. In this copy of TDW.INI, the video driver
setting (VideoDLL) is blank, and the DebuggerDLL setting
indicates the path to TDWIN.DLL.

Hardware debugging

12

You can use the debugging registers of the Intel 80386 (and
higher) processor to debug a Windows program. To use these
registers, you must load TDDEBUG.386 when you start Windows
(see the previous section).

See the online doc file HDWDEBUG.TDW for more information
on debugging Windows programs using hardware debugging
registers.

Turbo Debugger for Windows User's Guide

Where to now?

Programmers
learning Turbo
Pascal

Turbo Pascal pros;
Turbo Debugger
novices

Programmers
experienced with
Turbo Debugger

Chapter 1, Getting started

Now you can start learning about TDW. Since this User’s Guide is
written for three types of users, different chapters of the manual
might appeal to you. The following road map will guide you.

If you're just starting to learn Turbo Pascal, you’ll want to be able
to create small programs using it before you learn about the de-
bugger. After you've gained a working knowledge of the
language, work your way through Chapter 3, “A quick example,”
for a speedy tour of the major functions of TDW. There you’ll
learn enough about the features you need to debug your first pro-
gram; you'll find out about the debugger’s more sophisticated
capabilities in later chapters.

If you're an experienced Turbo Pascal programmer but you're
unfamiliar with Turbo Debugger, you can learn about the features
of the TDW environment by reading Chapter 2, “TDW basics.” If
it suits your style, you can then work through the tutorial in
Chapter 3, or, if you prefer, move straight on to Chapter 4,
“Starting TDW.”

If you've used Turbo Debugger in the past, you're probably
already familiar with TDW'’s standard features. In that case, you
can go directly to Chapter 11, “Using Windows debugging
features,” which discusses the features of TDW that support
Windows debugging. Another chapter you'll find helpful is
Chapter 14, “Debugging an ObjectWindows application,” which
takes you through a debugging session on a Windows application
written using the ObjectWindows library.

13

14

Turbo Debugger for Windows User’s Guide

Is there a bug?

Chapter 2, TDW basics

IDW basics

Debugging is the process of finding and correcting errors (“bugs”)
in your programs. It’s not unusual to spend more time on finding
and fixing bugs in your program than on writing the program in
the first place. Debugging is not an exact science; the best debug-
ging tool you have is your own “feel” for where a program has
gone wrong. Nonetheless, you can always profit from a system-
atic method of debugging.

The debugging process can be broadly divided into four steps:

1. realizing you have a bug

2. finding where the bug is

3. finding the cause of the bug
4. fixing the bug

The first step can be really obvious. The computer freezes up (or
hangs) whenever you run it. Or perhaps it crashes in a shower of
meaningless characters. Sometimes, however, the presence of a
bug is not so obvious. The program might work fine until you
enter a certain number (like 0 or a negative number) or until you
examine the output closely. Only then do you notice that the
result is off by a factor of .2 or that the middle initials in a list of
names are wrong.

15

Where is it?

What is it?

Fixing it

See Chapter 13 for a more
detailed discussion of the
debugging process.

The second step is sometimes the hardest: isolating where the
error occurs. Since you can’t keep the entire program in your head
at one time (unless it’s a very small program), your best approach
is to divide and conquer—break up the program into parts and
debug them separately. Structured programming is perfect for
this type of debugging.

The third step, finding the cause of the error, is probably the
second-hardest part of debugging. Once you've discovered where
the bug is, it’s usually somewhat easier to find out why the pro-
gram is misbehaving. For example, if you've determined the error
is in a procedure called PrintNames, you only have to examine the
lines of that procedure instead of the entire program. Even so, the
error can be elusive and you might need to experiment a bit
before you succeed in tracking it down.

The final step is fixing the error. Armed with your knowledge of
the programming language and knowing where the error is, you
can squash the bug. Now you run the program again, wait for the
next error to show up, and start the debugging process again.

Many times this four-step process is accomplished when you are
writing the program itself. Syntax errors, for example, prevent
your programs from compiling until they’re corrected. Turbo
Pascal for Windows has a built-in syntax checker that informs you
of these errors and lets you fix them on the spot.

But other errors are more insidious and subtle. They lie in wait
until you enter a negative number, or they’re so elusive you're
stymied. That's where TDW comes in.

What TDW can do for you

16

With TDW, you have access to a much more powerful debugger
than could exist in your language compiler.

You can use TDW with any program written in Turbo Pascal for
Windows. TDW runs in character mode and allows you to switch
to your application running under Windows.

Turbo Debugger for Windows User’s Guide

Chapter 2, TDW basics

TDW helps with the two hardest parts of the debugging process:
finding where the error is and finding the cause of the error. It
does this by controlling program execution so you can examine
the state of the program at any given spot. You can even test new
values in variables to see how they affect your program. With
TDW, you can perform tracing, back tracing, stepping, viewing,
inspecting, changing, and watching.

Tracing Executing your program one line at a time.

Back tracing Tracing backward through your executed code,
reversing the execution as you go.

Stepping Executing your program one line at a time, but
stepping over any routines or function calls. If
you’re sure your routines and functions are
error-free, stepping over them speeds up
debugging.

Viewing Opening a special TDW window to see the state
of your program from various perspectives:
variables, their values, breakpoints, the contents
of the stack, a log, a data file, a source file, CPU
code, memory, registers, numeric coprocessor
information, object or class hierarchies, execution
history, or program output.

Inspecting Delving deeper into the workings of your pro-
gram by examining the contents of complicated
data structures like arrays.

Changing Replacing the current value of a variable, either
globally or locally, with a value you specify.

Watching Isolating program variables and keeping track of
their changing values as the program runs.

You can use these powerful tools to dissect your program into
discrete chunks, confirming that one chunk works before moving
to the next. In this way, you can burrow through the program, no
matter how large or complicated, until you find where that bug is
hiding. Maybe you’ll find there’s a function that inadvertently
reassigns a value to a variable, or maybe the program gets stuck
in an endless loop, or maybe it gets pulled into an unfortunate
recursion. Whatever the problem, TDW helps you find where it is
and what's at fault.

17

What TDW won't
do

How TDW does it

TDW lets you debug object-oriented Pascal programs. It is smart
about objects, and it correctly handles late binding of virtual
methods so that it always executes and displays the correct code.

With all the features built into TDW, you might be thinking that

it’s got it all. In truth, there are at least three things TDW won’t do
for you.

m TDW cannot recompile your program for you. You need Turbo
Pascal for Windows to do that.

m TDW doesn’t run in graphics mode under Windows, but rather
runs in character mode.

m TDW does not take the place of thinking. When you're
debugging a program, your greatest asset is using your head.
TDW is a powerful tool, but if you use it mindlessly, it’s
unlikely to save you time or effort.

Here's the really good news: TDW gives you all this power and

sophistication, and at the same time it’s easy—even intuitive—to
use.

TDW accomplishes this blend of power and ease by offering an

integrated debugging environment. The next section examines the
advantages of this environment.

18

Once you start using TDW, we think you’ll be unable to get along
without it. TDW has been especially designed to be as easy and
convenient as possible. To this end, TDW offers you these

features:

m Convenient and logical global menus.

m Context-sensitive local menus throughout the product, which
practically do away with memorizing and typing commands.

m Dialog boxes in which you can choose, set, and toggle options
and type in information.

Turbo Debugger for Windows User’s Guide

Menus and
dialog boxes

Using the menus
Getting in

Chapter 2, IDW basics

m When you need to type, TDW keeps a history list of the text
you've typed in similar situations. You can choose text from the
history list, edit the text, or type in new text.

m Full macro control to speed up series of commands and
keystrokes.

m Copying and pasting between windows and dialog boxes.
m Convenient, complete window management.

m Mouse support.

m Access to several types of online help.

m Reverse execution.

m Single and dual monitor support.

The rest of this chapter discusses these features of the TDW
environment.

As with other Borland products, TDW has a convenient global
menu system accessible from a menu bar running along the top of
the screen. This menu system is always available except when a
dialog box is active.

A pull-down menu is available for each item on the menu bar.
Through the pull-down menus, you can
m execute a command.

W open a pop-up menu. Pop-up menus appear when you choose a
menu item that is followed by a menu icon (»).

m open a dialog box. Dialog boxes appear when you choose a
menu item that is followed by an ellipsis (...).

There are four ways you can open the menus on the menu bar:
m Press F10, use — or « to go to the desired menu, and press
Enter.

m Press F10, then press the first letter of the menu name (F, E, V, R,
B, D, O, W, H, or Spacebar for the System menu).

m Press Alf plus the first letter of any menu bar command (F, E, V,
R, B, D, O, W, H, or Spacebar for the System menu). For example,
wherever you are in the system, Aft-F takes you to the File menu.
The = (System) menu opens with Alt-Spacebar.

m Click the menu bar command with the mouse.

19

Getting around

[~ 8

Getting out

Dialog boxes

20

Once you are in the global menu system, here is how you move
around in it:

m Use — and « to move from one pull-down menu to another.
(For example, when you are in the File menu, pressing — takes
you to the Edit menu.)

m Use T and { to scroll through the commands in a specific menu.

m Use Home and End to go to the first and last menu items,
respectively.

m Highlight a menu command and press Enter to move to a
lower-level (pop-up) menu or dialog box.

m Click the mouse on a command to move to a lower-level (pop-
up) menu or dialog box.

This is how you get out of a menu or the menu system:

m Press Esc to exit a lower-level menu and return to the previous
menu.

m Press Escin a pull-down menu to leave the menu system and
return to the active window.

m Press F10in any menu (but not in a dialog box) to exit the menu.
m Click a window with the mouse to leave the menu system and
go to that window.

Some menu commands have a shortcut hot key that you press to
execute them. The hot key appears in the menu to the right of
these commands.

Figure 2.10 shows the complete pull-down menu tree for TDW.

Many of TDW’s command options are available to you in dialog
boxes. A dialog box contains one or more of the following items:

Turbo Debugger for Windows User’s Guide

Table 2.1
What goes in a dialog box

=

The hot key for the OK button
is Alt-K.

[x]

o~~~
°

L]

THISFILE.EXE

THATFILE.EXE

TOTHERFL. EXE

=

Knowing where
you are

Chapter 2, TDW basics

Item What it looks like, what it does

Buttons Buttons are “shadowed” text (on monochrome systems
they appear in reverse video). If you choose a button,
TDW carries out the related action immediately. Get
out of a dialog box by pressing the button marked OK
to confirm your choices, or Cancel to cancel them.
Dialog boxes also contain a Help button that brings up

online help.

Check boxes A check box is an on/off toggle. Choose it to turn the
option on or off. When a check box option is turned on,

an X appears in brackets: [X].

Radio buttons Radio buttons offer a set of toggles, but the choices are
mutually exclusive: you can choose only one radio
button in a set at a time. When you do, a bullet appears

between the parentheses, as follows: (*).

Input boxes An input box prompts you to type in a string (the name
of a file, for example). An input box often has a history
list associated with it (see “History lessons” in this
chapter for more on history lists).

List boxes A list box contains a list of items you can choose from

(for example, a list of possible files to open).

You navigate around dialog boxes by pressing Taband Shift-Tab.
Within sets of radio buttons, use the arrow keys to change the
settings. To choose a button, tab to it and press Enter.

If you have a mouse, it is even easier to get around in a dialog
box. Just click the item you want to choose. To cancel the dialog
box, click the close box in the upper left corner.

You can also choose items in a dialog box by pressing their hot
key, the highlighted letter in each command.

In addition to the convenient system of Borland pull-down
menus, the TDW advantage consists of a powerful feature that
lessens confusion by actually reducing the number of menus.

To understand this feature, you must realize that first and fore-
most, TDW is context-sensitive. That means it keeps tabs on

21

22

Local menus

exactly which window you have open, what text is selected, and
which subdivision, or pane, of the window your cursor is in. In
other words, it knows precisely what you're looking at and where
the cursor is when you choose a command. And it uses this infor-
mation when it responds. Let’s take an example to illustrate.

Suppose your program has a line like this:
MyCounter [TheGrade] := MyCounter[TheGrade] + 1;

As you’ll discover when you work with TDW, getting information
on data structures is easy; all you do is press Ctril, the hot key that
opens an Inspector window, to inspect it. When the cursor is at
MyCounter, TDW shows you information on the contents of the
entire array variable. But if you were to select (that is, highlight)
the whole array name and the index and then press Ctrl-, TDW
knows that you want to inspect one component and shows you
only that component.

You can tunnel down to finer and finer program detail in this
way. Pressing Ctrl-/ on a highlighted component while you're
already inspecting an array gives you a look at that component.

This sort of context-sensitivity makes TDW extremely easy to use.
It saves you the trouble of memorizing and typing complicated
strings of menu commands or arcane command-line switches.
You simply move to the item you want to examine (or select it
using the Ins key or drag over it with the mouse), and then invoke
the command (Ctrl-/ for Inspect, for example).

This context-sensitivity, which makes life easy for the user, also
makes the task of documenting commands difficult. This is
because Ctrl-l, for example, in TDW does not have a single result;
instead, the outcome of a command depends on where your cursor is or
what text is selected.

Another aspect of TDW'’s context-sensitivity is in its use of local
menus specific to different windows or panes within windows.

Local menus in TDW are tailored to the particular window or
pane you are in. It’s important not to confuse them with global
menus. Here is a composite screen shot of both kinds of menus
(when you're actually working in TDW, however, you could
never have both types of menus showing at the same time):

Turbo Debugger for Windows User's Guide

Figure 2.1
Global and local menus

Table 2.2
Global and local menu
operations

Chapter 2, TDW basics

*dt(hes
> begin (|| ar

Local menu

The following table compares global and local menus:

Global menus

Local menus

You access a global menu by press-
ing F10and using the arrow keys
or typing the first letter of the

the menu name.

A global menu is always available
from the menu bar, visible at the
top of the screen.

The contents of a global menu
never change.

Some of the menu commands have
hot key shortcuts that are
available from anywhere in TDW.

You call up a local menu by
pressing Alt-F10 or by clicking
the right button on your mouse.

The placement and contents of
the menu depend on which win-
dow or pane you are in and
where your cursor is.

Contents can vary from one local
menu to another. Even so, many
of the local commands appear in
almost all of the local menus, so
that there’s a predictable core of
commands from one to another.
The results of like-named com-
mands can be different, however,
depending on the context.

Every command on a local menu
has a hot key shortcut consisting
of Ctrl plus the highlighted letter
in the command. A hot key is
available only when the associa-
ted window or local menu is
active.

23

24

History lessons

Table 2.2: Global and local menu operations (continued)

Because of this arrangement, a
hot key, say Ctrl-S, might mean
one thing in one context but quite
another in a different context. (A
core of commands, however, is
still consistent across the local
menus. For example, the Goto
command and the Search
command always do the same
thing, even when they are
invoked from different panes.)

From a user’s standpoint, local menus are a great convenience. All
possible command choices relevant to the moment are laid out at
a glance. This feature helps you avoid choosing inappropriate
commands and keeps the menus small and uncluttered.

Menus and context-sensitivity comprise just two aspects of the
convenient environment of TDW. Another habit-forming feature
is the history list.

Conforming to the philosophy that the user shouldn’t have to
type more than absolutely necessary, TDW remembers whatever
you enter into input boxes and displays that text whenever you
call up the box again.

For example, to search for the function called MyPercentage, you
have to type in all or part of that word. Then suppose you want to
search for a variable called ReturnOnlnvestment. When you see the
dialog box this time, you’'ll notice that MyPercentage appears in
the input box. When you search for another text string, both pre-
viously entered strings appear in the input box. The list keeps
growing as you continue to use the Search command.

Turbo Debugger for Windows User’s Guide

Figure 2.2
A history list in an input box

The first item in a search list is
always the word the cursor is
on in the Module window.

Automatic name
completion

>

Chapter 2, TDW basics

The search input box might look like this:

end;

Writeln;
end; { ParmsOnHeap }

> begin { program }
nit;
Buffer := GetLine;
while Buffer <> '' do

begin
ProcessLine(Buffer);
Buffer := —=[#]——Enter segrch string

etLine
Numletters
IsLetter
Numlines
Getline

end;
ShowResults;
end.

 ——————
nter item prompted

You can use this history list as a shortcut to typing by using the
arrow keys to select any previous entry, then pressing Enter to
start the search. If you have a mouse, you can also use the scroll
bar to scroll to the entry you want. If you use an unaltered entry
from the history list, that entry is copied to the top of the list.

You can also edit entries (use the arrow keys to insert the cursor
in the highlighted text, then edit as usual, using Del or Backspace).
For example, you can select MyPercentage and change it to
HisPercentage, instead of typing in the entire text. If you start to
type a new item when an entry is highlighted, you will overwrite
the highlighted item.

A history list lists the last ten responses unless you’ve used
TDWINST to configure TDW otherwise. (The TDWINST program
is described in the online text file UTILS.TDW.)

TDW keeps a separate history list for most input boxes. That way,
the text you enter to do a search does not clutter up the box for,
say, going to a particular label or line number.

Whenever you are prompted for text entry in an input box, you
can type in just part of a symbol name in your program, then
press Ctrl-N.

When the word READY. .. appears in the upper right corner of the
screen with three dots after it, it means the symbol table is being

25

Em

Incremental
matching

Making macros

Whenever you find yourself
repeating a series of steps,
say to yourself, “Shouldn’t |
be using a macro for this?”

Window shopping

26

sorted. Ctr-N won’t work until the three dots go away, indicating
that the symbol table is available for name completion.

m If you have typed enough of a name to uniquely identify it,
TDW simply fills in the rest of it.

m If the name you have typed so far is not the beginning of any
known symbol name, nothing happens.

m If what you have typed matches the beginning of more than
one symbol name, a list of matching names is presented for you
to pick the one you want.

TDW also lets you use incremental matching to find entries in a
dialog box list of file and directory names. Start typing the name
of the file or directory; if the file is available from the names at or
below the current position in the list box, the highlight bar moves
to the name as soon as you have typed enough characters to
identify it uniquely. Then all you have to do is choose the OK
button.

Macros are simply hot keys you define to perform a series of
commands and other keystrokes.

You can assign any series of TDW commands and keystrokes to a
single key, for playback whenever you want.

See page 67 in Chapter 4 for an explanation of how to define
macros.

TDW displays all information and data in menus (local and
global), dialog boxes (which you use to set options and enter
information), and windows. There are many types of windows; a
window’s type depends on what sort of information it holds. You
open and close all windows using menu commands (or hot key
shortcuts for those commands). Most of TDW’s windows come
from the View menu, which lists fifteen types of windows.
Another class of window, called the Inspector window, is opened
by choosing either Data | Inspect or Inspect from a local menu.

Turbo Debugger for Windows User’s Guide

Windows from the View To the left is a list of the fifteen types of windows you can open
menu from the View menu.

gzggtpoints Once you have opened one or more of these windows, you can
Log move, resize, close, and otherwise manage them with commands
Hatches from the Window and = (System) menus, which are discussed
Module. .. F3 later in this chapter in the section “Working with windows.”
File...

CPU

Dump . .

Registers Breakpoints window

Numer1g processor

5)1(252:133 history Displays the breakpoints you have set. A breakpoint defines a
g;pdgws messages location in your program where execution stops so you can
Anoehor » | examine the program’s status. The left pane lists the position of

every breakpoint (or indicates that it is global), and the right pane

See Chapfer 7 fora indicates the conditions under which the currently highlighted
complete description of this breakpoint executes
type of window and how P ’

breakpoints work. Jge this window to modify, delete, or add breakpoints.

Stack window

Chapter 5 provides more Displays the current state of the stack, with the function called
information on the Stack et on the bottom and all subsequently called functions on top,
window. . . .
in the order in which they were called.

You can bring up and examine the source code of any function in
the stack by highlighting it and pressing Ctrl-/.

By highlighting a function name in the stack and pressing Ctrl-L,
you open a Variables window displaying variables global to the
program, variables local to the function, and the arguments with
which the function was called.

Log window

Chapter 7 fells you more Displays the contents of the message log. The log contains a
about the Log window. - serolling list of messages and information generated as you work
in TDW. 1t tells you such things as why your program stopped,
the results of breakpoints, and the contents of windows you saved
in the log.

You can also use the log window to obtain information about
memory usage, modules, and window messages for your
Windows application.

Chapter 2, IDW basics 27

See Chapter 6 for more
about the Wafches window.

Chapter 5 describes the
Variables window in more
detail.

Chapter 8 details the Module
window and its commands.

You can learn more about
the File window in Chapter 8.

28

This window lets you look into the past and see what led to the
current state of affairs.

Watches window

Displays variables and expressions and their changing values as
the program executes. You can add a variable to the window by
pressing Ctrl-W when the cursor is on the variable in the Module

window.

Variables window

Displays all the variables accessible from a given spot in your pro-
gram. The upper pane has global variables; the lower pane shows
variables local to the current function or module, if any.

This window is helpful when you want to find a function or
variable that you know begins with, say, “abc,” and you can’t
remember its exact name. You can look in the global Symbol pane
and quickly find what you want.

Module window

Displays the program code for the module you're debugging and
for any DLLs called from the module. You can move around
inside the module or DLL and examine data and code by posi-
tioning the cursor on program variable names and issuing the
appropriate local menu command.

You will probably spend more time in Module windows than in
any other type, so take the time to learn about all the various local
menu commands for this type of window.

You can also press F3 to open a Module window.

File window

Displays the contents of a disk file. You can view the file either as
raw hex bytes or as ASCII text, and you can search for specific text
or byte sequences.

Turbo Debugger for Windows User’s Guide

Chapter 12 discusses the
CPU window and assembler-
level debugging.

See Chapter 12, which
discusses assembler
debugging, for more on this
window.

Chapter 12, which discusses
assembler debugging, has
more information on this
window.

See the file ASMDEBUG.TDW
for more information about
using the Numeric Processor
window.

Chapter 2, TDW basics

CPU window

Displays the current state of the central processing unit (CPU).
This window has six panes: one that contains disassembled
machine instructions, one that shows the contents of a selector,
one that shows hex data bytes, one that displays a raw stack of
hex words, one that lists the contents of the CPU registers, and
one that indicates the state of the CPU flags.

The CPU window is useful when you want to watch the exact
sequence of instructions that make up a line of source code or the
bytes that comprise a data structure. If you know assembler code,
this can help locate subtle bugs. You do not need to use this
window to debug the majority of programs.

TDW sometimes opens a CPU window automatically if your
program stops in Windows code or on an instruction in the
middle of a line of source code.

Dump window

Displays a raw display of an area of memory. (This window is the
same as the Data pane of a CPU window.) You can view the data
as characters, hex bytes, words, doublewords, or any floating-
point format. You can use this window to look at some raw data
when you don’t need to see the rest of the CPU state or to gain
direct access to I/O ports. The local menu has commands to let
you modify the displayed data, change the format in which you
view the data, and manipulate blocks of data.

Registers window

Displays the contents of the CPU registers and flags. This window
has two panes, which are the same as the registers pane and flags
pane, respectively, of a CPU window. Use this window when you
want to look at the contents of the registers but don’t need to see
the rest of the CPU state. You can change the value of any of the
registers or flags through commands in the local menu.

Numeric Processor window

Displays the current state of the numeric coprocessor. This
window has three panes: one pane that shows the contents of the
floating-point registers, one that shows the status flag values, and
one that shows the control flag values.

29

See Chapter 5 for more
information on the Execution
History window.

See Chapter 10 for more
information about using the
Hierarchy window.

Chapter 11 explains how to
use the Windows Messages
feature.

See page 37 foran
explanation of how to use
1D’s Clipboard.

30

This window can help you diagnose problems in programs that

use floating-point numbers. You need to have a fair understand-
ing of the inner workings of the numeric coprocessor in order to
really reap the benefits of this window.

Execution History window

Displays source lines for your program, up to the last line
executed. The window indicates

1. whether you are tracing or stepping
2. the line of source code for the instruction about to be executed
3. the line number of the source code

You can examine it or use it to rerun your program to a particular
spot.

Hierarchy window

Lists and displays a hierarchy tree of all object types used by the
current program. The window has two panes: one for the object
type list and the other for the object hierarchy tree. This window
shows you the relationship of the objects used by the current
module. By using this window’s local menu commands, you can
examine any object type’s data fields and methods.

Windows Messages window

Displays a list of messages passed between the windows in y

ays a2l ccit 2

Windows application. This window has three panes:

ur

m The left pane shows which procedures or handles you're
tracking messages for.

m The right pane shows the type of messages you're tracking.
m The bottom pane displays the messages being tracked.

Clipboard window

Displays the items that have been clipped into the Clipboard,
showing you their types and letting you inspect or delete an item
and freeze the value of any item in the Clipboard.

Turbo Debugger for Windows User’s Guide

Module...
Dump
File...

User screen

Alt-F5 is the hot key that
toggles between the
environment and the User
screen.

Inspector windows

=

Chapter 2, TDW basics

Duplicate windows

You can also open duplicates of three types of windows—Dump,
File, and Module—by choosing View | Another. This lets you keep
track of several separate areas of assembly code, different files the
program uses or generates, or several distinct program modules
at once.

Don’t be alarmed if TDW opens one of these windows all by itself.
It will do this in some cases in response to a command.

The User screen shows your program’s full output screen. The
screen you see is exactly the same as the one you would see if
your program was running directly under Windows and not
under TDW.

You can use this screen to check that your program is at the place
in your code that you expect it to be, as well as to verify that it is
displaying what you want on the screen. To switch to the User
screen, choose Window | User Screen. After viewing the User
screen, press any key to go back to the debugger screen.

An Inspector window displays the current value of a selected
variable. Open it by choosing Data | Inspect or Inspect from a local
menu. Usually, you close this window by pressing Esc or clicking
the close box with the mouse. If you’ve opened more than one
Inspector window in succession, as often happens when you
examine a complex data structure, you can remove all the Inspec-
tor windows by pressing Alf-F3 or using the Window | Close
command.

You can open an Inspector window to look at an array of items or
at the contents of a variable or expression. The number of panes in
the window depends on the nature of the data you are inspecting.
An Inspector window adapts to the type of data being displayed.
It can display not only simple scalars (integer, char, and so on), but
also pointers, arrays, and records. Each type of data item is dis-
played in a way that closely mimics the way you're used to seeing
it in your program’s source code.

Although you create additional Inspector windows simply by
choosing the Inspect command, you can create additional
Module, File, or CPU windows only by choosing View | Another.

31

32

The active window Even though you can have many windows open in TDW at the
same time, only one window can be active. You can spot the active
window by using the following criteria:

m The active window has a double outline around it, not a single
line.

m The active window contains the cursor or highlight bar.

m If your windows are overlapping, the active window is the
topmost one.

When you issue commands, enter text, or scroll, you affect only
the active window, not any other windows that are open.

Figure 2.3
The active window has a
double outline

while
begin ds: 0000 CD 20 00 A0 00 9A FI
Proc|| ds:0008 A4 02 D3 01 C5 41 9
Buff|| ds:0010 C5 41 8D 02 DE 3B D
end; ds:0018 01 01 01 00 03 FF F
ShowRe t«nff

ParmsOnHeap;
end.

What'’s in a window A window always has most or all of the following features, which
give you information about it or let you do things to it:

Turbo Debugger for Windows User’s Guide

Figure 2.4 Zoom and

. . Window Iconize
Atypical WindOw 156 pox Titte number boxes
v 13 oo
=[#]=Module: TDDEMOW File: TDDEMOW.PAS 3l=——————]=[4][i]
end;
Writeln;

end; { ParmsOnHeap }

» begin { program }
Init;
Buffer := GetlLine;
while Buffer <> '' do

begin
ProcessLine(Buffer);
Buffer := GetLine;
end;
ShowResults;
ParmsOnHeap; ¢ Scroll bar
end. :

+
Scroll bar Resize box

m An outline (double if the window is active, single otherwise).
m A title, located at the left top.

@2 " Ascroll bar or bars on the right or bottom if the window opens
on more information than it can hold at one time. You operate
the scroll bars with the mouse:

e Click the direction arrows at the ends of the bar to move one
line or one character in the indicated direction.

o Click the gray area in the middle of the bar to move one
window size in the indicated direction.

e Drag the scroll box to move as much as you want in the
direction you want.

@ ¥ Aresize box in the lower right corner. Drag it with your mouse
to make the window larger or smaller. if no scroli bar is present
on the bottom or right side of a window, that side of the
window border also activates window resizing.

m A window number in the upper right, reflecting the order in
which the window was opened.

@2 ¥ A zoom box and iconize box in the upper right corner. The one
on the left contains the zoom icon, the one on the right the
iconize icon. Click these with your mouse to expand the
window to full screen size, restore it to its original size, or
iconize it. (When a window is zoomed to full size, only the
unzoom box is available, and when it is iconized, only the zoom
box is available.)

Chapter 2, TDW basics 33

[~ 8

Working with windows

Press Alt-Spacebar to open the
= menu, or Alt-W to open the

34

Window menu.

F6 is the hot key for the
Window | Next Window.

m A close box in the upper left corner. Click it with your mouse to
close the window.

With all these different windows to work with, you will probably
have several open onscreen at a time. TDW makes it easy for you
to move from one window to another, move them around, pile
them on top of one another, shrink them to get them out of your
way, expand them to work in them more easily, and close them
when you are through.

Most of the window-management commands are in the Window
menu. You'll find a few more commands in the = (System) menu,
the menu marked with the = icon at the far left of the menu bar.

Window hopping

Each window that you open is numbered in the upper right
corner. Usually, the Module window is window 1 and the
Watches window is window 2. Whatever window you open after
that will be window 3, and so on.

This numbering system gives you a quick, easy means of moving
from one window to another. You can make any of the first nine
open windows the active window by pressing Alt in combination
with the window number. If you press Alt-2, for example, to make
the Watches window active, any commands you choose will affect
that window and the items in it.

You can also cycle through the windows onscreen by choosing
Window | Next or pressing F6. This is handy if an open window’s
number is covered up so you don’t know which number to press
to make it active.

If you have a mouse, you can also activate a window by clicking
it.

To see a list of all open windows, choose Window from the menu
bar. The bottom half of the Window menu lists up to nine open
windows from which you can make a selection. Just press the

. number of a window to make it the active one.

If you have more than nine windows open, the window list will
include a Window Pick command; choose it to open a pop-up
menu of all the windows open onscreen.

Turbo Debugger for Windows User’s Guide

Tab and Shift-Tab are the hot
keys for Window | Next Pane.

(N8

Chapter 2, IDW basics

If a window has panes—areas of the window reserved for a
specific type of data—you can move from one pane to another by
choosing Window | Next Pane or pressing Tab or Shift-Tab.

You can also click the pane with the mouse.

The most pane-full window in TDW is the CPU window, which
has six panes.

As you hop from pane to pane, you'll notice that a blinking cursor
appears in some panes, and a highlight bar appears in others. If a
cursor appears, you move around the text using standard keypad
commands. (PgUp, Ctrl-Home, and Ctrl-PgUp, for example, move the
cursor up one screen, to the top of pane, or to the top of the list,
respectively.) If you've disabled shortcut keys, you can also use
WordStar-like hot keys for moving around in the pane.

If there’s a highlight bar in a pane instead of a cursor, you can still
use standard cursor-movement keys to get around, but a couple
of special keystrokes also apply. In alphabetical lists, for example,
you can select by typing. As you type each letter, the highlight bar
moves to the first item starting with the letters you’ve just typed.
The position of the cursor in the highlighted item indicates how
much of the name you have already typed. Once the highlight bar
is on the desired item, your search is complete. This incremental
matching or select by typing minimizes the number of characters
you must type in order to choose an item from a list.

Once an item is selected (highlighted) from a list, you can press
Alt-F10 or Ctrl-F10 or the right mouse button to display the local
menu and choose a command relevant to the highlighted item. In
many lists, you can also just press Enter once you have selected an
item. This acts as a hot key to one of the commonly used local
menu commands.

Finally, a number of panes let you start typing a new value or
search string without choosing a command first. This usually
applies to the most frequently used local menu command in a
pane or window—Ilike Goto in a Module window, Search in a File
window, or Change in a Registers window.

Moving and resizing windows

When you open a new window in TDW, it appears near the
current cursor location and has a default size suitable for the kind
of window it is. If you find either the size or the location of the

35

Ctrl-F5 is the hot key for the
Window | Size/Move
command.

F5 is the hot key for the

Window | Zoom command.

36

Alt-F3 is the hot key for
Window | Close.

&t

Alt-F6 is the hot key for
Window | Undo Close.

window inconvenient, you can use the Window | Size/Move
command to adjust the size or location of the window.

When you move or resize a window, your active window border
changes to a single-line border. You can then use the arrow keys
to move the window around or Shift with the arrow keys to
change the size of the window onscreen. Press Enter when you're
satisfied.

If you have a mouse, moving and resizing a window is even
easier:

m Drag the resize box in the lower right corner to change the size
of the window.

m Drag the title bar or any edge (but not the scroll bars) to move
the window around.

If you want to enlarge or reduce a window quickly, choose
Window | Zoom, or click the mouse on the zoom box or the
iconize box (one or two boxes each containing an arrow) in the
upper right corner of the window.

Finally, if you want to get a window out of the way temporarily
but don’t want to close it, make the window active, then choose
Window | Iconize/Restore. The window will shrink to a tiny box
(icon) with only its name, close box, and zoom box visible. To
restore the window to its original form, make it active and choose
Window | Iconize/Restore again, or click your mouse on the zoom
box.

Closing and recovering windows

When you are through working in a window, you can close it by
choosing Window | Close.

If you have a mouse, you can also click the Close box in the upper
left corner of the window.

If you close a window by mistake, you can recover it by choosing
Window | Undo Close or by pressing Alt-F6. This works only for the
last window you closed.

You can also restore your TDW screen to the layout it had when
you first entered the program. Just choose = (System) | Restore
Standard.

Turbo Debugger for Windows User’s Guide

Copying and
pasting

You can use the Ins key to
mark multiple items in a list.

>

The Pick dialog box

Chapter 2, TDW basics

Finally, if your program has overwritten your environment screen
with output (because you turned off screen swapping), you can
clean it up again with = (System) | Repaint Desktop.

Saving your window layout

Use the Options | Save Options command to save a specific
window configuration once you have the screen arranged the way
you like. In the Save Configuration dialog box, tab to Layout and
press Spacebar to toggle it on. In the Save To text box, indicate the
configuration file to save to (TDCONFIG.TDW is the default),
then press Enter or click OK to save the configuration.

If you save the configuration to TDCONFIG.TDW, the screen will
appear with your chosen layout each time you start TDW. This
configuration file is the only one loaded automatically when TDW
is loaded. You can load other configurations with other names by
using the Options | Restore Options command.

TDW has an extensive copy and paste feature called the
Clipboard. With the Clipboard you can copy and paste between
TDW windows and dialog boxes.

The items you copy into the Clipboard are dynamic; if an item has
an associated value, the Clipboard keeps that value current as it
changes in your program.

To copy an item into the Clipboard, position the cursor on the
item or highlight it with the Ins key, then press Shift-F3. To paste
something into a window or dialog box from the Clipboard, press
Shift-F4 or use the Clip button in the dialog box to bring up the
Pick dialog box.

You can paste into any dialog box prompt (any place in a dialog
box where you can type text) by pressing Shift-F4, even if the
dialog box doesn’t have a Clip button. You can also paste into
dialog box prompts with multiple fields.

Pressing Shift-F4 or the Clip button brings up a dialog box listing
Clipboard contents and showing the categories you can use for
pasting an item into the dialog box.

37

Figure 2.5
The Pick dialog box

The Clipboard window

38

Figure 2.6
The Clipboard window

Pick (Pascal)

Tipboard]

@TDDEMOW. 112 NumLines e) String
@TDDEMOW. 143 i () Location
i1 (8$1) () Contents

This dialog box shows a scrolling list of items in the Clipboard
and allows you to interpret the item to be pasted in up to three
ways: as a string, as an address, or as contents of an address. The
categories you can use in pasting the item depend on its type and
its destination (discussed later).

For example, if you clip text from the Log window, it can be
pasted only as a string. If you clip text from the Module window,
it can be pasted elsewhere as a string or as an address, but not as
contents. If you clip a variable from an Inspector window, it can
be pasted as a string, a location, or as contents.

To paste an item into a dialog box, highlight the item, select the
appropriate category, then either press Enter or the Paste button,
depending on what effect you want to have on the dialog box.

m Pressing Enter simply pastes the item in and returns you to the
dialog box.

m Pressing the Paste button both pastes the item in and passes an
Enter to the dialog box, causing it to perform its function.

There’s a View window that lets you see the contents of the
Clipboard. Choosing View | Clipboard displays the Clipboard
window, which lists all clipped items.

[#]=Clipboard 5=[1] [+]
Module : @TDDEMOW.SHOWRESULTS . SHOWLETTERINFO NumLines
Inspector : NUMLINES 0 (30

Module @TDDEMOW . SHOWRESULTS . SHOWLETTERINFO NumLetter
1 ec NUMLETTERS 0 ($0)

t

The leftmost field of this window describes the type of the entry,
followed by a colon and the clipped item. If the clipped item is an
expression from the Watches window, a variable from the
Inspector window, or data, a register, or a flag from the CPU
window, the item is followed by its value or values.

Turbo Debugger for Windows User’s Guide

Table 2.3
Clipboard item types

Chapter 2, TDW basics

Clipboard item types

When you clip an item from a Window, Turbo Debugger assigns
it a type to help you identify the source of the item. The following
table shows the Clipboard types:

Type Description

String A text string, like a marked block from the File
window

Module A module context, including a source code position,
like a variable from the Module window

File A position in a file (in the File window) that isn’t a
module in the program

CPU code An address and byte list of executable instructions
from the Code pane of the CPU window

CPU data An address and byte list of data in memory from the
Data pane of the CPU window or the Dump window

CPU stack A source position and stack frame from the Stack
pane of the CPU window

CPU register A register name and value from the Register pane of
the CPU window or the Registers window

CPU flag A CPU flag value from the Flags pane of the CPU
window

Inspector One of the following:
® A variable name from an Inspector window
® A constant value from an Inspector or Watches

window
W A register-based variable from an Inspector
window

® A bit field from an Inspector window

Address An address without data or code attached

Expression An expression from the Watches window

Coprocessor An 80x87 numeric coprocessor register

Control flag An 80x87 control flag value

Status flag An 80x87 status flag value

39

40

Inspect
Remove
Delete all
Freeze

Table 2.4
Clipboard local menu
commands

See Chapter 6 for more
information on watching
expressions.

Tips for using the
Clipboard

The Clipboard window local menu

If you're in the Clipboard window and you press Al-F10 or click
the right mouse button, you see the menu at the left. Alterna-
tively, you can press Ctrl and the highlighted key of the local menu
command to execute a command.

Command Description

Inspect Positions the cursor in the window from which the
item was clipped.

Remove Removes the highlighted item or items. Pressing Del has
the same effect on a highlighted item.

Delete All Deletes everything in the Clipboard.

Freeze Stops the Clipboard item from being dynamically
updated.

Dynamic updating

The Clipboard dynamically updates any item with an associated
value, such as an expression from the Watches window, a variable
from the Inspector window, or a register from the CPU window.
You can use the Clipboard as a large Watches window if you
wish, and you can freeze the value of any item you like.

For example, you might want to put a Watches window
expression in the Clipboard. To do so, first put it in the Watches
window, then press Shift-F3 to copy it into the Clipboard. The
value of the item then changes just as it would in a Watches
window, unless you use the local menu Freeze command to
disable the watchpoint.

One advantage of watching an expression in the Clipboard is that
you can freeze the expression at a certain value, then continue
running the program and compare the frozen value to the
changing values in the Watches window.

The possible uses of the Clipboard are too numerous to list here.
Some of the things you can do with it are

m clipping from lines in Module windows as a way of marking
locations that you can later return to using the local menu Goto
command (by pasting a location into the dialog box displayed
by the Goto command)

m watching an expression (see the previous section)

Turbo Debugger for Windows User’s Guide

® pasting new values into variables using the Data | Evaluate
dialog box or the dialog box for the Change command of the
Inspector window or the Watches window

m pasting strings into the Log window to help you keep track of
what you did during a debugging session

m pasting an address (the location category of an item) into any of
the places where an address is requested (such as the
Breakpoints | Options dialog box Address field, or the Run |
Execute To dialog box)

®m pasting expressions into conditions and actions of breakpoints
m pasting parameters into the Run | Arguments dialog box

m pasting a window procedure name or an ObjectWindows object
name into the Windows Messages window

m pasting a string into the dialog box for the Module window
Search command

m copying data from and pasting it to the CPU data pane

m copying code from one part of the CPU window to another and
then running the program with the copied code

Getting help

As you've seen, TDW goes out of its way to make debugging easy
for you. It doesn’t require you to remember obscure commands; it
keeps lists of what you type, in case you want to repeat it; it lets
you define macros; and it offers sophisticated control of your
windows. To avoid potential confusion, TDW offers the following
help features:

ey T An activity indicator in the upper right corner always displays
—_— the current activity. For example, if your cursor is in a window,

the activity indicator reads READY; if there’s a menu visible, it
reads VMENU; if you're in a dialog box, it reads PROMPT. If you ever
get confused about what’s happening in TDW, look at the
activity indicator for help. (Other activity indicator modes are
SIZE/MOVE, MOVE, ERROR, RECORDING, WAIT, RUNNING, HELP, STATUS, and
PLAYBACK.)

m The active window is always topmost and has a double line
around it.

® You can access an extensive context-sensitive help system by
pressing F1. Press F1 again to bring up an index of help topics
from which you can select what you need.

Chapter 2, TDW basics 4]

42

Online help

Index Shift-F1
Previous topic Alt-F1
Help on help

The status line

m The status line at the bottom of the screen always offers a quick
reference summary of keystroke commands. The line changes
as the context changes and as you press Altor Ctrl. Whenever
you are in the menu system, the status line offers a one-line
synopsis of the current menu command.

For more information on the last two avenues for help, read the
following two sections.

TDW, like other Borland products, gives context-sensitive
onscreen help at the touch of a single key. Help is available
anytime you're in a menu or window, or when an error message
or prompt is displayed.

Press F1 to bring up a Help screen showing information pertinent
to the current context (window or menu). If you have a mouse,
you can also bring up help by clicking F1 on the status line. Some
Help screens contain highlighted keywords that let you get addi-
tional help on that topic. Use the arrow keys to move to any key-
word and then press Enter to get to its screen. Use the Home and
End keys to go to the first and last keywords on the screen,
respectively.

You can also access the onscreen help feature by choosing Help
from the menu bar (Alt-H).

If you want to return to a previous Help screen, press Alt-F1 or
choose Previous Topic from the Help menu. From within the Help
system, use PgUp to scroll back through up to 20 linked help
screens. (PgDn only works when you’re in a group of related
screens.) To access the Help Index, press Shift-F1 (or F1 from within
the Help system), or choose Index from the Help menu. To get
help on Help, choose Help | Help on Help. To exit from Help,
press Esc.

Whenever you're in TDW, a quick-reference help line appears at
the bottom of the screen. This status line provides at-a-glance
keystroke or menu command help for your current context.

In a window

The normal status line shows the commands performed by the
function keys and looks like this:

Turbo Debugger for Windows User’s Guide

Figure 2.7
The normal status line

Figure 2.8
The status line with Alt pressed

Figure 2.9
The status line with Ctrl
pressed

Chapter 2, TDW basics

F 1 ST 2N 3TN N SN ST 7 SN ST O | O

If you hold down the Altkey for a second or two, the commands
performed by the Altkeys are displayed.

AR Bkot at GK-Close J-Back Ji-User JU-Undo [f-Instr Ji-Rtn [-To lU-Locall

If you hold down the Ctrl key for a second or two, the commands
performed by the Ctrlletter keys are displayed. This status line
changes depending on the current window and current pane, and
it shows the single-keystroke equivalents for the current local
menu. If there are more local menu commands than can be
described on the status line, only the first keys are shown. You
can view all the available commands on a local menu by pressing
Alt-F10 to pop up the entire menu.

RIARRE (<ot Xlat o0 e T e Boprevious BoLine goocarch qNext

In a menu or dialog box

Whenever you are in a menu or a dialog box, the status line
displays a one-line explanation of what the current item does. For
example, if you have highlighted View | Registers, the status line
says Open a CPU registers window.

The status line gives you menu help whether you are in a global
menu or a local menu.

43

Complete menu tree

Figure 2.10: The complete Turbo Debugger menu tree

[- e Cindo T)
| I
| —] 1
= (System) Run Options
Repaint desktop Run F9 Language... Source
Restore standard Go to cursor F4 Macros >
Trace into F7 Display options... ——1
About... Step over F8 Path for source...
Execute to... Alt-F9 Save options...
Until return Alt-F8 Restore options...
| Animate...
Back trace Alt-F4
File Instruction trace Alt-F7
) Create... Alt =
Open... Arguments... Stop recording Alt -
Change dir... Program reset Ctri-F2 Remove. ..
Get info... Delete all
Symbol load...
Quit Alt-X I——~ [
Breakpoints Window
Toggle F2 Zoom F5
At... Alt-F2 Next F6
" Changed memory global... Next pane Tab
Expression true global... Size/move Ctr1-F5
Edit Hardware breakpoint... Iconize/restore
Delete all Close Alt-F3
Copy Shft-F3 Undo close Alt-F6
Paste Shft-F4
Copy to log User screen Al1t-F5
Dump pane to log 1 (First open window)
(2-9 open windows)
Window pick...
| EEEEE— r I
View Data Help
Breakpoints Inspect... Index Shft-F1
Stack Evaluate/modify... Ctrl1-F4 Previous topic Alt-Fl
Log Add watch... Ctri-F7 Help on help
Watches Function return
Variables
Module... F3
File...
CPU
Dump
Registers
Numeric processor
Execution history
Hierarchy
Windows messages Module...
Clipboard Dump
Another > File...

44 Turbo Debugger for Windows User’s Guide

A quick example

If you're eager to use TDW and aren’t the sort of person to work
through the whole manual first, this chapter gives you enough

- knowledge to debug your first program. Once you've learned the
basic concepts described here, the integrated environment and

context-sensitive Help system make it easy to learn as you go
along.

This chapter leads you through all TDW's basic features. After
describing the demo program TDDEMOW provided on the
distribution disks, it shows you how to

m run and stop program execution

m examine the contents of program variables

m look at complex data objects, like arrays and structures

m change the value of variables

The demo program

The demo program (TDDEMOW) introduces you to the two main
things you need to know to debug a program: how to stop and
start your program and how to examine your program’s variables
and data structures. The program itself is not meant to be
particularly useful: Some of its code and data structures exist
solely to show you TDW's capabilities.

Chapter 3, A quick example 45

46

The program uses the WinCrt unit to display its outputin a
window under Windows. It’s not a full-featured Windows
application, but it does illustrate some useful TDW concepts.

The demo program lets you type in some lines of text, then counts
the number of words and letters that you entered. At the end of
the program, it displays some statistics about the text, including
the average number of words per line and the frequency of each
letter.

C.> Make sure your working directory contains the two files needed
for the tutorial: TDDEMOW.PAS and TDDEMOW.EXE.

Geftingin To start the demo program,

1. Make sure Windows is running in standard or 386 enhanced
mode (enhanced mode for Windows 3.1). TDW doesn’t run in
real mode.

2. In the Windows Program Manager, open the program group
that contains Turbo Pascal and highlight the Turbo Pascal
icon.

3. Choose File | Open and enter the full path to TDDEMOW.PAS.

4. When TDDEMOW.PAS comes up in the Edit window, choose
Run | Debugger to run TDW and load the demo. Turbo Pascal
compiles the program with debugging information for you if
necessary.

TDW loads the demo program, displays the startup screen, and
positions the cursor at the start of the program.

Turbo Debugger for Windows User’s Guide

Figure 3.1
The startup screen showing
TDDEMOW

Getting out

Getting Help

Using TDW

190:

i =Modu e TDDEMOW F] e: TDDEMOW PAS

{*** Program begins here x#x}

» begin { program }

Init;

Buffer := GetlLine;

while Buffer <> '' do

begin
ProcessLine(Buffer);
Buffer := GetLine;

end;

ShowResults;

The startup screen consists of the menu bar, the Module and
Watches windows, and the status line.

To exit from TDW at any time, press Alt-X. If you get hopelessly
lost following the tutorial, press Ctrl-F2 to reload the program and
start at the beginning. However, Ctr-F2 doesn’t clear breakpoints
or watches; you'll have to use Alf-B D to do that.

Press F1 whenever you need Help with the current window,
menu command, dialog box, or error message. You can learn a lot
by working your way through the menu system and pressing F1
at each command to get a summary of what it does.

The menus

Chapter 3, A quick example

This section discusses how to use TDW’s menus and windows
and the status line that appears below a window.

The top line of the screen shows the menu bar. To pull down a
menu from it, press F10. Then, to choose a menu command, you
can either use « or — to highlight your selection and press Enter,
or press Altin combination with the highlighted letter of one of the
menu names.

47

Figure 3.2
The menu bar

F10

?

Esc

The status line

Figure 3.3
The status line

Press F10 now. Notice that the cursor disappears from the Module
window, and the = command on the menu bar becomes high-
lighted. The bottom line of the screen also changes to indicate
what sort of functions the = menu performs.

Use the arrow keys to move around the menu system. Press | to
pull down the menu for the highlighted item on the menu bar.

You can also open a menu by clicking an item in the menu bar
with your mouse.

Press Esc to move back through the levels of the menu system.
When just one menu item on the menu bar is highlighted, pres-
sing Esc returns you to the Module window, with the menu bar
no longer active.

The status line at the bottom of the screen shows relevant function
keys and what they do.

PR D G CKDL 100 [Rohere e Z0on Jae-Noxt @i race o rep e -run kW]

This line changes depending on what you are entering (menu
commands, data in a dialog box, and so on). Hold Alt down for a
second or two, for example. Notice that the status line changes to
show you the function keys you can use with Al.

Now press Ctrl for a second. The commands shown on the status
line are the hot keys to the local menu commands for the current
pane (area of the window). They change depending on which sort
of window and which pane you are in. (More about these later.)

As soon as you enter the menu system, the status line changes
again to show you what the currently highlighted menu option
does. Press F10 to go to the menu bar, and press — to highlight the
File option. The status line now reads, File oriented functions.
Use { to scroll through the options on the File menu, and watch
the message change. Press Esc or click the Module window with
your mouse to leave the menu system.

Turbo Debugger for Windows User's Guide

The windows

The window area takes up most of the screen. This area is where
you examine various parts of your program through the different
windows.

The display starts up with two windows: a Module window and
the Watches window. Until you open more windows or adjust
these two, they remain tiled, filling the entire screen without
overlapping. New windows automatically overlap existing
windows until you move them.

Figure 3.4
dun Freakpoints | READY
The Modiule and Watches | B TRENS CE TEr- M-S M Nll=
windows, tiled program DoNuthin; A

L
» begin
end.
This is the Module window
v
— —— - s — S ———— -

ERE L 7 i ,,' 3 HHERER . e
| is is the Watches window

-Mod [@l-Here [@8-Zoom [EE-Next [@-Trace [F-Step

Notice that the Module window has a double-line border and a
highlighted title, which indicate that it’s the active window. You

use the cursor keys (the arrow keys, Home, End, PgUp, and so on) to
move around inside the active window. Now press F6 to switch to
another window. The Watches window becomes active, with a
double-line border and a highlighted title.

You use commands from the View menu to create new windows.
For example, choose View | Stack to open a Stack window. The
Stack window pops up on top of the Module window.

Alt Now press Alt-F3 to remove the active window. The Stack window
disappears.

Al TDW stores the last-closed window, making it possible for you to
recover it if you need to. If you accidentally close a window,
choose Window | Undo Close. If you do so now, you see the Stack

Chapter 3, A quick example 49

window reappear. You can also press Alf-F6 to recover the last-
closed window.

The Window menu contains the commands that let you adjust the
appearance of the windows you already have onscreen. You can
both move the window around the screen and change its size.
(You can use Ctrl-F5 to do the same thing.)

Choose Window | Size/Move and use the arrow keys to reposition
the active window (the Stack window) on the screen. Next, hold
Shift down and use the arrow keys to adjust the size of the
window. Press Enter when you have defined a new size and
position that you like.

Now, to prepare for the next section, remove the Stack window by
pressing Alt-F3. Then continue with the next section.

Using the TDDEMOW sample program

(7]

The filled arrow (») in the left column of the Module window
shows where TDW stopped your program. Since you haven’t run
your program yet, the arrow is on the first line of the program.
Press F7to trace a single source line. The arrow and cursor are
now on the next executable line.

Look at the right margin of the Module window title. It shows the
line that the cursor is on. Move the cursor up and down with the
arrow keys and notice how the line number in the title changes.

To make the program execute until it reaches line 189, move the
cursor to that line and then press F4. TDDEMOW prompts you to
enter a string. Type ABC, a space, DEF, and then press Enter. Now,
with the cursor still on line 189, press F7 twice to execute two
more lines of source code. Since the second line you executed is a
call to a different procedure, the arrow now appears on the first
line of the function ProcessLine. Continuing to press F7 would step
you through the function ProcessLine and then return you to the
line following the call—line 192. Instead, press Alt-F8 to make the
program execute ProcessLine and then stop when ProcessLine
returns. This command is very useful when you want to jump
past the end of a function or procedure.

If you had pressed F8instead of F7 on line 189, the cursor would
have gone directly to line 192 instead of into the function. F8is

Turbo Debugger for Windows User’s Guide

similar to F7in that it executes procedures, but it doesn’t step
through their source code.

Figure 3.5
.ﬂ R READY
The program stops after n *HEO ule: TODEMON File: . ; L1
returning from a procedure ghi!e Buffer <> '' do A
egin
ProcessLine(Buffer);
> Buffer := GetlLine;
end;
ShowResults;
ParmsOnHeap;
end.
|]
]
v
—

To execute the program until it reaches a specific place, you can
name the function or line number directly, instead of moving the
cursor to that line in a source file and then running to that point.
Press Alt-F9 to specify a label to run to. A dialog box appears. Type
GetLine and press Enter. The program runs, then stops at the
beginning of function GetLine.

Setting

bbreakpoints Another way to control where your program stops running is to
set breakpoints. The simplest way to set a breakpoint is with the
F2 key. Move the cursor to line 141 and press F2. TDW highlights
the line, indicating there is a breakpoint set on it. (A quick way to
get to line 141 is to press Ctrl-L, the hot key for the Line command
in the Module window local menu, then type 141 in the text entry
box and press Enter.)

@ Youcanalso use the mouse to toggle breakpoints by clicking the
first two columns of the Module window.

Chapter 3, A quick example 51

52

Figure 3.6
A breakpoint at line 141

Using watches

i: Integer;) i
WordLen : Word;

begin { ProcessLine }
> Inc(NumLines);

i=1;
while i <= Length(S) do
begin
{ Skip non-letters }]
while (i <= Length(S)) and not IsLetter(S[i]) do l
v

Inc(i);

{ Find end of word, bump letter & word counters }
WordLen := 0;
ghi!e (i <= Length(S)) and IsLetter(S[i]) do

egin
Inc(NumLetters);

Now press F9 to execute your program without interruption. The
screen switches to the program’s display. The demo program is
now running and waiting for you to enter a line of text. Type abc,
a space, def, and then press Enter. The display returns to the TDW
screen with the arrow on line 141, where you set a breakpoint that
has stopped the program. Now press F2 again to toggle it off.

See Chapter 7 for a complete description of breakpoints, including
conditional and global breakpoints.

The Watches window at the bottom of the screen shows the value
of variables you specify. For example, to watch the value of the
variable NumWords, move the cursor to the variable name on line
164. (A quick way to get there is to press Ctrl-S, the hot key for the
Search command in the Module window local menu, then type
Numifords in the text entry box and press Enter.) Then choose Watch
from the Module window local menu (bring it up with Aft-F10 or
the right mouse button, or use the shortcut Ctr-W).

Turbo Debugger for Windows User's Guide

Figure 3.7
A Pascal variable in the
Watches window

Examining simple
Pascal data
objects

Chapter 3, A quick example

N S O T o e

lnc(LetterTable[UpCase(S[1])] Count); A
if WordLen = 0 t { bump counter }
Inc§LetterTab]e[UpCase(S[1])] .FirstLetter);
Inc(i);
Inc(WordLen);
end;

{ Bump word count info }
if WordLen > 0 then
begin u
Inc(NumWords) ;
if WordlLen <= MaxWordLen then
Inc(WordLenTable[WordLen]);
v
9 o) % 2|

end;
end; { while }
end; { ProcessLine }

function GetLine : BufferStr;

NumWords now appears in the Watches window at the bottom of
the screen, along with its type (Word) and value. As you execute
the program, TDW updates this value to reflect the variable’s
current value.

Once you have stopped your program, there are a number of
ways of looking at data using the Inspect command. This very
powerful facility lets you examine data structures in the same
way that you visualize them when you write a program.

The Inspect commands (in various local menus and in the Data
menu) let you examine any variable you specify. Suppose you
want to look at the value of the variable NumLines. Move the
cursor back to line 141 so it’s under one of the letters in NumLines
and press Ctrl-l. An Inspector window pops up.

53

Figure 3.8
An Inspector window

indow

141 1

points

i : Integer;
WordLen : Word;

begin { ProcessLine }
» Inc(NumLines);
i 1 @[l]:lnspecting NumLines=3=[*][4]
ﬂj

i=1
while 1 <|le77D1:003E
begin
{ Skip
(

]

while (1 <= Lengt! and not Isletter(S[i]) do

Inc(i);

{ Find end of word, bump letter & word counters }
WordLen := 0;
while (i <= Length(S)) and IsLetter(S[i]) do
begin
Inc(NumLetters);
Inc(LetterTable[UpCase(S[i])].Count);

Watches

The first line tells you the variable name; the second line shows its
address in memory. The third line tells you what type of data is
stored in NumLines (it's a Pascal Word) and displays the current
value of the variable.

Now, having examined the variable, press Esc to close the
Inspector window. You can also use Alt-F3 to remove the Inspector
window, just like any other window, or you can click the close
box with your mouse.

Let’s review what you actually did here. By pressing Ctrl, you used
a hot key for the local menu commands in the Module window.
Pressing I specified the Inspect command.

To examine a data item that is not conveniently displayed in the
Module window, choose Data | Inspect. A dialog box appears,
asking you to enter the variable to inspect. Type LetterTable and
press Enter. An Inspector window appears, showing the value of
LetterTable. Use the arrow keys to scroll through the 26 elements
that make up LetterTable. The title of the Inspector window shows
the name of the data you are inspecting. The next section shows
you how to examine this compound data object.

Turbo Debugger for Windows User’s Guide

Examining
compound
Pascal data
objects

Figure 3.9
Inspecting a record

Alt

Changing Pascal
data values

Chapter 3, A quick example

A compound data object, such as an array or structure, contains
multiple components. Move to the fourth element of the
LetterTable array (the one indicated by ['D’]). Press Alt-F10 to bring
up the local menu for the Inspector window, then choose Inspect.
A new Inspector window appears, showing the contents of that
element in the array. This Inspector window shows the contents
of a record of type LInfoRec.

i : Integer;
WordLen : Word; ——Inspecting LetterTable-3———
@7701:005A

[

begin { ProcessLine }
> Inc(NumLines);

i=1; C'y

while i <= Length(S) do |['D']
begin [w]=Inspecting LetterTab
{ Skip non-letter|(@77D1:0066
while (i <= Lengt||§0]
Inc(i);

{ Find end of wor
WordLen := 0;
while (i <= Length(S)) and IsLetter(S[i]) do
begin i
Inc(NumLetters);
Inc(LetterTable[UpCase(S[i])].Count);

When you place the cursor over one of the member names, the
data type of that member appears in the bottom pane of the
Inspector window. If one of these members were in turn a com-
pound data object, you could issue an Inspect command and dig
down further into the data structure.

Press Alt-F3 to remove both Inspector windows and return to the
Module window. (Alt-F3is a convenient way of removing several
Inspector windows at once. If you had pressed Esc, only the
topmost Inspector window would have been deleted.)

So far, you've learned how to look at data in the program. Now,
let’s change the value of data items.

Use the arrow keys to go to line 114 in the source file. Place the
cursor at the variable called NumlLetters and press Ctrl-/ to inspect

55

its value. In the Inspector window, press Alt-F10 to bring up the
Inspector window’s local menu. Choose the Change option. (You
could also have done this directly from the Inspector window by
pressing Ctrl-C.) A dialog box appears, asking for the new value.

Figure 3.10

. di ata Jgptions gindow PROMPT
The Change didlog box | IFEIFHEEE I ——— !
begin
NumLines := 0;
NumWords := 0;

NumLetters := 0;
FillChar(LetterTable, SizeOf(Let
FillChar(WordLenTable, SizeOf(Wo
Writeln('Enter a string to proce
end; { Init}

[#]=Inspecting NumLetters=3=[%][+]
[an 042]
| %

[s]=Enter new value
procedure ProcessLine(va
NumLetters + 4
function IslLetter(ch : C
begin [OK ol Cancel o Help ¢
IsLetter := UpCase(ch)
end; { IsLetter }

var
i : Integer;

At this point, you can enter any Pascal expression that evaluates
to a number. Type Nunletters + 4 and press Enter. The value in the
Inspector window now shows the new value, 10 ($3).

To change a data item that isn’t displayed in the Module window,
choose Data | Evaluate/Modify. A dialog box appears. Enter the
name of the variable to change. Type NunLines and press Enter. The
result is displayed in the middle pane. Press Tab twice, then type
123 and press Enter. This sets the variable NumLines to 123.

Turbo Debugger for Windows User's Guide

Figure 3.11
The Evaluate/Modify dialog
box

Chapter 3, A quick example

begin
NumLines :=
NumWords :

NumLetters

FillChar(L
FillChar(W
WriteIn('E
end; { Init

procedure Pr

function IsL

begin
IsLetter :

end; { IsLet

var
i : Integer;

———Watches —————

That wraps up our quick introduction to using TDW with a Turbo
Pascal for Windows program. Chapter 13 offers a more extensive
debugging sample.

57

58

Turbo Debugger for Windows User’s Guide

Starting TDW

This chapter tells you how to prepare programs for debugging.
We show you how to start TDW from Windows and how to tailor
its many command-line options to suit the program you are
debugging. We explain how to make these options permanent in a
configuration file and, finally, how to return to Windows when
you are done.

Preparing programs for debugging

Chapter 4, Starting TDW

When you compile and link with Turbo Pascal for Windows, you
can tell the compiler to generate full debugging information by
checking Options | Linker | Debug Info in EXE and Options |
Compiler | Debug Information.

If you have compiled your program’s modules without any de-
bugging information and you select Run | Debugger from a Turbo
Pascal edit window, Turbo Pascal will recompile your program
with debug information before launching TDW.

If you need to recompile your modules with debugging informa-
tion, it’s possible to generate debug information only for specific
modules (you might have to do this if you're debugging a large
program), but you will find it annoying later to enter a module
that doesn’t have any debug information available. We suggest
recompiling all modules.

59

Enter the directive just like
this, with no spaces.

Starting TDW

If you're using the integrated environment of Turbo Pascal for
Windows, you need to do the following before compiling to put
debug information into your .EXE or DLL file:

m Use the Options | Linker command to bring up the Linker
Options window, then check the Debug Info in EXE check box.

m Use the Options | Compiler command to bring up the Compiler
Options window, then check the Debug Information check box.
Alternatively, you can use the {$D+} compiler directive.

m If you want to be able to access local symbols (any declared
within procedures and functions), you must either use
Options | Compiler to bring up the Compiler Options window
and then check the Local Symbols check box, or put the
following directive at the start of your program:

{$L+}

If you're using the command-line compiler (TPCW.EXE), you
must compile using the /v command-line option. Debug infor-
mation and local symbols are, by default, generated. If you don't
want them, use the command-line options /$D- and /$L- to disable
them.

60

Warning!

There are four ways to run TDW:

m If you are in Turbo Pascal for Windows, you can debug the
program in the active window by choosing Run | Debugger.

m If you are in Windows, the easiest method is to open the
appropriate program group in the Windows Program Manager
and choose the TDW icon. Then choose File | Open to load the
program you're debugging.

For this and the next option, unless TDW is in your path and
your program is in your Windows directory, you must be
careful to type in the correct path for both TDW and your
application.

m If you are in Windows and you want to enter command-line
options, you can start TDW by using the Windows Program
Manager File | Run command to open the Run dialog box. Then,
in the Command Line input box, just type 10w, followed by any
command-line options and, optionally, the name of the
program you're debugging, as if you were at the DOS prompt.

Turbo Debugger for Windows User’s Guide

m If you are at the DOS prompt, you can start TDW by entering
the following and pressing Enter:

WIN TDW [options] [progname [progargs]]

Entering

command-line If you start TDW from the DOS prompt or by using the Program
options Manager' File| Run command, you can add command-line options
after typing TDW.
If you start TDW from Turbo Pascal for Windows, you can enter
command-line options by using Run | Parameters.

You can also indicate options in the TPW.INI file.

Directly entering The generic command-line format is
command-line options
TDW [options] [progname [progargs]]
The items enclosed in brackets are optional; if you include any,
type them without the brackets. Progname is the name of the pro-
gram to debug.

You can follow a program name with arguments. Here are some
sample command lines:

Command Action

tdw -tc:\progl progl a b Starts the debugger in the C:\PROG1
directory and loads program progl

with two command-line arguments, a
and b.

tdw prog2 -x Starts the debugger with default
options and loads program prog2
with one argument, —x.

If you simply type TDW Enter, TDW loads and uses its default
options.

Indicating command- If you start TDW from Turbo Pascal and you want to indicate
line options in TPW.INI command-line options or change the path to TDW.EXE, you have
to edit the Turbo Pascal for Windows initialization file, TPW.INI.

This file is located in the same directory as the Windows program
(WINDOWS is the default name).

Chapter 4, Starting TDW 61

62

Things to remember

When you edit TPW.INI, you see a Startup section, followed by
one or more Startup settings. For example,

[Startup]
CfgPath=C: \TPW\TPW.CFG
SizeOrg=2,44,44,596,377

You can add TDW information to the file after the startup
information. To indicate that the information is for TDW, you
must start a new section called Debugger. This section can contain
two settings, Exepath and Switches. The format of the Debugger
section is as follows:

[Debugger]
Exepath=<pathname>
Switches=<command-line options>

Exepath Enter the path to TDW.EXE. This setting is
necessary if you have moved TDW.EXE
somewhere besides the directory where the
INSTALL program put it.

Switches Enter one or more TDW command-line options
separated by spaces. Do not enter the name of
the program you want TDW to load; Turbo
Pascal determines it for you.

For example, if you've moved TDW.EXE to a directory on your C
drive called TDW and you want to start TDW in assembler mode
and set the source directory to C:\MYAPP\SOURCE, your
Debugger section would look like the following:

[Debugger]
Exepath=C:\TDW
Switches=-1 -sdc:\myapp\source

When you run a program in TDW, you need to have both its .EXE
and .DLL files and the original source files available. TDW
searches for source files first in the directory the compiler found
them in when it compiled, second in the directory specified in the
Options | Path for Source command, third in the current directory,
and fourth in the directory the .EXE or .DLL file is in.

You must already have compiled your source code into an
executable (.(EXE or .DLL) file with full debugging information
turned on before debugging with TDW.

Turbo Debugger for Windows User’s Guide

Running TDW

TDW works only with Windows programs compiled with a
Borland compiler.

If you're running your program from Windows and notice a bug,
you have to exit your program and load it under TDW before you
can begin debugging.

All .EXE and .DLL files for the application must be in the same
directory.

When you run TDW, it comes up in full-screen character mode,
not in a window. Despite this appearance, TDW is a Windows
application and will run only under Windows.

Unlike other applications that run under Windows, you can'’t use
the Windows shortcut keys (like Al-Esc or Ctrl-Esc) to switch out of
the TDW display and run another program. However, if the appli-
cation you are debugging is active (the cursor is active in one of
its windows), you can use Alt-Esc, Ctrl-Esc, or the mouse to switch
to other programs.

If you do use Ctri-Esc to switch out of an application running
under TDW, you see the application name on the list of tasks. You
will never see TDW on the task list because TDW is not a normal
Windows task that you can switch into or out of.

Command-line options

The end of this chapter has a
complete list of TDW'’s
command-line options.

Chapter 4, Starting TDW

All TDW command-line options start with a hyphen (-) and are
separated from the TDW command and each other by at least one
space. You can explicitly turn a command-line option off by
following the option with another hyphen. For example, —p—
disables the mouse. Turning a command-line option off works
even if an option has been permanently enabled in the configu-
ration file. You can modify the configuration file by using the
TDWINST configuration program described in the online text file
UTILS.TDW.

The following sections describe all available TDW command-line
options.

63

Loading the
configuration file
(-c)

Display updating
(-d)

Getting help (-h
and =7?)

Assembler-mode
startup (-

This option loads the specified configuration file. There must not
be a space between —¢ and the file name.

If the —c option isn’t included, TDCONFIG.TDW is loaded if it
exists. Here’s an example:

TDW -cMYCFG.TDW TDDEMOW

This command loads the configuration file MYCONF.TDW and
the source code for TDDEMOW.

The —d options affect the way in which display updating is
performed.

—do Runs TDW on your secondary display. View your pro-
gram’s screen on the primary display, and run the
debugger on the secondary one.

—ds The default option for all displays, it’s also called screen
swapping. Required if your only display is monochrome.
Maintains a separate screen image for the debugger and
the program being debugged by loading the entire screen
from memory each time your program is run or the de-
bugger is restarted. This technique is the most time-
consuming method of displaying the two screen images,
but works on any display hardware and with programs
that do unusual things to the display.

These options display a window that describes TDW’s command-
line syntax and options.

This option forces startup in assembler mode, showing the CPU
window. TDW does not execute your program’s startup code,
which usually executes automatically when you load your
program into the debugger. This means that you can step through
your startup code.

Turbo Debugger for Windows User’s Guide

Mouse support
-p)

>

Source code
handling (-s)

This option doesn’t change
the starting directory.

Starting directory
G))

Chapter 4, Starting TDW

If you are debugging a DLL, this option also allows you to debug
the assembly-language code that starts up the DLL. See Chapter
11, page 173, for more information on debugging DLLs.

This option enables mouse support. However, since the default

for mouse support in TDW is On, you won’t have much use for

the —p option unless you use TDWINST to change the default to
Off. If you want to disable the mouse, use —p—.

If the mouse driver is disabled for Windows, it will be disabled
for TDW as well, and the —=p command-line option will have no
effect. :

-SC Ignores case when you enter symbol names, even if your
program has been linked with case sensitivity enabled.

Without the —sc option, Turbo Debugger ignores case
only if you've linked your program with the case ignore
option enabled.

-sd Sets one or more source directories to scan for source files;
the syntax is

-sddirname(;dirname. ..]

To set multiple directories, use multiple dirnames sepa-
rated with semicolons (;) with the ~sd option or use the
-sd option repeatedly or both. TDW searches for
directories in the order specified. dirname can be a relative
or absolute path and can include a disk letter. If the
configuration file specifies any directories, the ones
specified by the —sd option are added to the end of that
list.

This option changes TDW's starting directory, which is where
TDW looks for the configuration file and for .EXE files not
specified with a full path. There must not be a space between the
option and the directory path name.

65

—t<dir> Set the starting directory to <dir>. The syntax is

-tdirname
You can set only one starting directory with this option. If you
enter multiple directories for one -t option, TDW ignores all the
directories. If you enter the option more than once on the same
command line, TDW uses only the last entry.

For example, the following entry would start TDW in the
D:\WORKING directory:

tdw -tc:\utils\screensv -td:\working

Configuration files

See page 3 and the README
file for more information on
TDW.INI.

See the file UTILS.TDW for a
description of how to use
TDWINST to create
configuration files.

TDW has two configuration files.

m TDCONFIG.TDW is created and altered by the TDWINST
program and overrides command-line options to set things like
display colors and display options.

m TDW.INJ, installed in the Windows system directory by the
installation program, has settings for special video adapters and
indicates the location of the Windows-debugging DLL
TDWIN.DLL.

TDW uses a configuration file to override built-in default values
for command-line options. You can use TDWINST to set the
options that TDW will default to if there is no configuration file.
You can also use it to build configuration files.

TDW IUUK.‘: Iur the Luuuguxduuu file TDCONFIG.TDW first in the

current dlrectory, next in the TDW directory set up with the
Turbo Pascal for Windows installation program, and then in the
directory that contains TDW.EXE.

If TDW finds a configuration file, the settings in that file override
TDW’s built-in defaults. Any command-line options that you
supply when you start TDW from DOS override both the
corresponding default options and any corresponding values in
TDCONFIG.TDW.

Turbo Debugger for Windows User’s Guide

The Options menu

Language. .. Source
Macros >
Display options...
Path for source...
Save options...
Restore options...

The Language
command

The Macros menu

Create Alt=
Stop recording Alt-
Remove...
Delete all

Create

Stop Recording

>

Chapter 4, Starting TDW

The Options menu lets you set or adjust a number of parameters
that control the overall appearance and operation of TDW. The
following sections describe each menu command and refer you to
other sections of the manual where you can find more details.

Chapter 9 describes how to set the current expression language
and how it affects the way you enter expressions.

The Macros command displays another menu that lets you define
new keystroke macros or delete ones that you have already
assigned to a key. It has the following commands: Create, Stop
Recording, Remove, and Delete All.

When issued, the Create command starts recording keystrokes
into an assigned macro key. As an alternative, press the Alt= (Alt-
Equal) hot key for Create.

When you choose Create to start recording, a prompt asks for a
key to assign the macro to. Respond by typing in a keystroke or
combination of keys (for example, Shift-F9). The message RECORDING
will be displayed in the upper right corner of the screen while you
record the macro.

The Stop Recording command terminates the macro recording
session. Use the Alt- (Alt-Hyphen) hot key to issue this command
or press the macro keystroke that you are defining to stop
recording.

Do not use the Options | Macro | Stop Recording menu selection to
stop recording your macro, as these keystrokes will then be added
to your macro! (The menu item is added to remind you of the Alt-
hot key.)

67

Remove

Delete All

Display Options
command
Figure 4.1

The Display Options dialog
box

Displays a

dialog box listing all current macros. To delete a

macro, select one from the list and press Enter.

Removes all keystroke macro definitions and restores all keys to
the meaning that they originally had.

This command opens a dialog box in which you can set several
options that control the appearance of the TDW display.

e Bt e o Roeshie PROMPT
—[w]=Module: TDDEMOW File: TDDEMOW.PAS 217: 1=
end; A
Writeln;
end;
[#] =========>Display optio
» begin { program } Integer format
H t Hex
Buffer := GetLine; () Decimal
while Buffer <> '' do *) Both
begin
ProcessLine(Buffer) || IENEyIIRRLES Pab size
it ormmensan —
end;
ShowResuts; [OK ol Cance! SN Help J
end.

Display Swapping The Display Swapping radio buttons let you choose from two
ways of controlling how the User screen gets swapped back and
forth with TDW's screen:

68

Smart

Always

Swap to the User screen only when display output may
occur. TDW swaps the screens any time that you step
over a routine.

Swap to the User screen every time the user program
runs. Use this option if the Smart option is not catching
all the occurrences of your program writing to screen.
If you choose this option, the screen flickers every time
you step through your program because TDW's screen
is replaced for a short time with the User screen.

Turbo Debugger for Windows User’s Guide

Integer Format

Screen Lines

Tab Size

Path for Source
command

Save Options
command

Chapter 4, Starting TDW

These radio buttons let you choose from three formats for
displaying integers:

Hex Shows integers as hexadecimal numbers, displayed in
a format appropriate to the current language.

Decimal Shows integers as ordinary decimal numbers.

Both Shows integers as both decimal numbers and as hex
numbers in parentheses after the decimal value.

These radio buttons are used to determine whether TDW's screen
uses the normal 25-line display or the 43- or 50-line display
available on EGA and VGA display adapters.

This input box lets you set how many columns each tab stop
occupies. You can reduce the tab column width to see more text in
source files that have a lot of code indented with tabs. You can set
the tab column width from 1 to 32.

Sets the directories that TDW searches for your source files. See
the discussion of the Module window in Chapter 8 for more
information.

This command opens a dialog box from which you can save your
current options to a configuration file on disk. The options you
can save are

W your macros
m the current window layout and pane formats
m all settings made in the Options menu

69

Figure 4.2 .
The Save Options dialog box -:[. e
end;
Writeln;
end;

» begin { program }
Init;
Buffer := GetLine;

while Buffer <> '' do X] Options
begin Layout
ProcessLine(Buffer);] Macros

Buffer := GetlLine;
end; Save To
ShowResults;

configuration informatiol

TDW lets you save your options in any or all of these ways,
depending on which of the Save Configuration check boxes you
turn on:

Options Saves all settings made in the Options menu.
Layout Saves the windowing layout.
Macros Saves the currently defined macros.

You can also use the Save To input box to change the name of the
configuration file to which you are saving the options.

Restore Options

command Restores your options from a disk file. You can have multiple
configuration files, containing different macros, window layouts,
and so forth. You must choose a configuration file that was
created with the Save Options command or with TDWINST.

Returning to Windows

You can end your debugging session and return to the Windows
Program Manager at any time by pressing Alt-X, except when a
dialog box is active (in that case, first close the dialog box by
pressing Esc). You can also choose File | Quit.

70 Turbo Debugger for Windows User’s Guide

Summary of command-line options

Table 4.1
TDW command-line options

Chapter 4, Starting TDW

When you start up TDW from the Windows Program Manager
File | Run command, you can at the same time configure it using
certain options. Here’s the general format to use:

TDW [options] [program name [program args]]

Items enclosed in brackets are optional. Following an option with
a hyphen disables that option if it was already enabled in the

configuration file.

Option What it means

—cfilename Startup configuration file

—do Other display

—ds Swap user screen contents

—h,-? Display help screen listing all the command-line
options

- Assembler startup code debugging for
applications and DLLs (the letter in this option is
alowercase L)

-p Enable mouse

-sc No case-checking of symbols

—sddir[;dir...] Source file directory

—tdirectory Set starting directory for loading configuration

and executable files

71

72

Turbo Debugger for Windows User’s Guide

Confrolling program execution

When you debug a program, you usually execute portions of it
and check at a stopping point to see that it is behaving correctly.
TDW gives you many ways to control your program’s execution.
You can

m execute single machine instructions or single source lines

m skip over calls to functions or procedures

® “animate” the debugger (perform continuous tracing)

m run until the current function or procedure returns to its caller
m run to a specified location

m continue until a breakpoint is reached

mreverse program execution

A debugging session consists of alternating periods when either
your program or the debugger is running. When the debugger is
running, you can cause your program to run by choosing one of
the Run menu’s command options or pressing its hot key equiva-
lent. When your program is running, the debugger starts up again
when either the specified section of your program has been exe-

cuted, or you interrupt execution with a special key sequence, or
TDW encounters a breakpoint.

This chapter shows you how to examine the state of your pro-
gram whenever TDW is in control. You'll see various ways to
execute portions of your program, and also how to interrupt your
program while it’s running. Finally, you'll learn the ways you can

Chapter 5, Controlling program execution 73

restart a debugging session, either with the same program or with
a different program.

Examining the current program state

74

The Variables
window

Figure 5.1
The Variables window

The “state” of your program consists of the following elements:

m its command-line arguments

m the stack of active functions or procedures

m the current location in the source code or machine code

m register values

m the contents of memory

m the reason the debugger stopped your program

m the value of your program data variables

The following sections explain how to use the Variables window,
the Stack window, the local menus of the Global and Static panes,
and the Origin and Get Info commands. See Chapter 6 for more

information on how to examine and change the values of your
program data variables.

You open the Variables window by choosing View | Variables.
This window shows you all the variables (names and values) that
are accessible from the current location in your program. Use it to
find variables whose names you can’t remember. You can then
use the local menu commands to further examine or change their
values. You can also use this window to examine the variables
local to any function that has been called.

3=[1 V]
07129:01FA A
TDDEMOW. INIT ©7129:0402
TDDEMOW . PROCESSLINE ©7129:0486
TDDEMOW. GETLINE 07129:05A6
TDDEMOW . PARMSONHEAP 07129:0651
S 1 (31)
0 ($

[w]=Variabl

True

'ABC DEF'

1 ($1)

28969 ($7129)

Turbo Debugger for Windows User’s Guide

The Global pane local
menu

Inspect
Change...
Watch

See Chapter 6 for more
information on how Inspector
windows behave.

The Variables window has two panes:

m The Global pane (top) shows all the global symbols in your
program.

m The Static pane (bottom) shows all the static symbols in the
current module (the module containing the current program
location, CS:IP) and all the symbols local to the current
function.

Both panes show the name of the variable at the left margin and
its value at the right margin. If TDW can’t find any data type
information for the symbol, it displays four question marks (222?).

Press Alt-F10 (as with all local menus) to pop up the Global pane’s
local menu. If control-key shortcuts are enabled, you can also
press Ctrl with the first letter of the desired command to access it.

If your program contains routines that perform recursive calls, or
if you want to view the variables local to a function that has been
called, you can examine the value of a specific instance of a func-
tion’s local data. First create a Stack window with View | Stack,
then move the highlight to the desired instance of the function
call. Next, press Alt-F10and choose Locals. The Static pane of the
Variables window then shows the values for that specific instance
of the function.

This local menu consists of three commands: Inspect, Change, and
Watch.

Inspect

Opens an Inspector window that shows you the contents of the
currently highlighted global symbol.

If the variable you want to inspect is the name of a function, you
are shown the source code for that function, or if there is no
source file, a CPU window shows you the disassembled code.

If the variable you inspect has a name that is superseded by a
local variable with the same name, you'll see the actual value of
the global variable, not the local one. This characteristic is slightly
different than the usual behavior of Inspector windows, which
normally show you the value of a variable from the point of view
of your current program location (CS:IP). This difference gives
you a convenient way of looking at the value of global variables
whose names are also used as local variables.

Chapter 5, Controlling program execution 75

See Chapter @ for more
information on assignment
and data type conversion.

See Chapter 6 for more

information on the Watches

window.

The Static pane local
menu

Inspect
Change...
Watch
Show. ..

See Chapter 6 for more

information on how Inspector

76

windows behave.

See Chapter 9 for more
information on assignment
and data type conversion.

Change

Changes the value of the currently selected (highlighted) global
symbol to the value you enter in the Change dialog box. TDW
performs any necessary data type conversion exactly as if the
assignment operator for your current language had been used to
change the variable.

You can also change the value of the currently highlighted symbol
by opening the Inspector window and typing a new value. When
you do this, the same dialog box appears as if you had first
specified the Change command.

Watch

Opens a Watches window and puts the currently selected
(highlighted) global symbol in the window. This command
simply puts a character string in the Watches window.

The Watches window doesn’t keep track of whether the variable
is local or global. If you insert a global variable using the Watch
command and later encounter a local variable by the same name,
the local variable takes precedence as long as you are in the local
variable’s block. In other words, the Watches window always
shows you the value of a variable from the point of view of your
current program location (CS:IP).

Press the Alt-F10 key combination to pop up the Static pane’s local
menu; if control-key shortcuts are enabled, use the Ctrl key with
the first letter of the desired command to access it.

The Static pane has four local menu commands: Inspect, Change,
Watch, and Show.

Inspect

Opens an Inspector window that displays the contents of the
currently highlighted module’s local symbol.

Change

Changes the value of the currently selected (highlighted) local
symbol to the value you enter in the Change dialog box. TDW
performs any data type conversion necessary, exactly as if the
assignment operator had been used to change the variable.

Turbo Debugger for Windows User’s Guide

See Chapter 6 for more
information on how Watches
windows behave.

Figure 5.2
The Local Display dialog box

The Stack window

You can also change the value of the currently highlighted symbol
by opening the Inspector window (see previous command) and
starting to type a new value. When you do this, the same dialog
box appears as if you had first specified the Change command.

Watch

The Watch command opens a Watches window and puts the
currently selected (highlighted) static or local symbol in the
window.

Show

Choosing Show brings up the Local Display dialog box, which
enables you to change both the scope of the variables being
shown (static, auto, or both) and the module from which these
variables are selected.

The following radio buttons appear in this dialog box:

Static Show only static variables.

Auto Show only variables local to the current block.
Both Show both types of variables (the default).

Module Change the current module. Brings up a dialog box

showing the list of modules for the program, from
which you can select a new module.

[n] Local Displa

Static
Auto
Both

Module

You create a Stack window by choosing View | Stack. The Stack
window lists all active functions or procedures. The most recently
called routine is displayed first, followed by its caller and the
previous caller, all the way back to the main program. For each
procedure or function, you see the value of each parameter it was
called with.

Chapter 5, Controlling program execution 77

Figure 5.3
The Stack window

The Stack window local

78

menu

Inspect
Locals

= [a]=Stacke———3-[1][1]
TDDEMOW. PROCESSLINE. ISLETTER('A')
TODEMOW. PROCESSLINE (' ABC DEF'
TDDEMOW

The Stack window likewise displays the names of object methods,
each prefixed with the name of the object type that defines the
method:

SHAPES.ACIRCLE (174, 360, 75.0) {Turbo Pascal}

Press Alt-F10 to pop up the Stack window local menu, or press Ctrl
with the first letter of the desired command to access it.

The Stack window local menu has two commands: Inspect and
Locals.

Inspect

Opens a Module window positioned at the active line in the
currently highlighted procedure. If the highlighted procedure is
the top (most recently called) procedure, the Module window
shows the current program location (CS:IP). If the highlighted
procedure is one of the procedures that called the most recent
procedure, the cursor is positioned on the line in the procedure
that will be executed after the called procedure returns.

You can also invoke this command by positioning the highlight
bar over a procedure, then pressing Enter.

Locals

Opens a Variables window that shows the symbols local to the
current module and the symbols local to the currently highlighted
procedure. If a procedure calls itself recursively, there are multi-
ple instances of the procedure in the Stack window. By position-
ing the highlight bar on one instance of the procedure, you can
use this command to look at the local variables in that instance.

Turbo Debugger for Windows User’s Guide

The Origin local
menu command

The Get Info
command

Figure 5.4
The Get Info text box

Global memory
information

Both the Module window and the Code pane of a CPU window
have an Origin command on their local menus. Origin positions
the cursor at the current code segment (CS:IP). This is very useful

‘when you have been looking at your code and want to get back to

where your program stopped.

You can choose File | Get Info to look at memory use and to
determine why the debugger gained control. This command
produces a text box that disappears when you press Enter,
Spacebar, or Esc.

[x]
Progranm
Status : W messag JJo}l wndproc

System information

Breakpoints : Hardware

DOS version : 5.00

11-19-1991 5:04pm

The following information appears in the System Information
box:

m The name of the program you’re debugging

mA déécription of why your program stopped

m Information about the global memory on your system

m The DOS version you're running

m The current date and time

TDW provides you with the following information about global
memory:

Mode Memory modes can be large-frame EMS, small-
frame EMS, and non-EMS (extended memory).

Chapter 5, Controlling program execution 79

80

Status line messages

Banked The amount in kilobytes of memory above the EMS
bank line (eligible to be swapped to expanded
memory if the system is using it).

Not banked The amount in kilobytes of memory below the EMS
bank line (not eligible to be swapped to expanded
memory).

Largest The largest contiguous free block of memory, in
kilobytes.

Here are the messages you'll see on the second (status) line,
describing why your program stopped:

Stopped at ___
Your program stopped as the result of a completed Run |
Execute To, Run | Go to Cursor, or Run | Until Return
command. This status line message also appears when your
program is first loaded, and the compiler startup code in your
program has been executed to put you at the start of your
source code.

No program loaded
You started TDW without loading a program. You cannot
execute any code until you either load a program or assemble
some instructions using the Assemble local menu command in
the Code pane of a CPU window.

Trace
You executed a single source line or machine instruction with
F7 (Run | Trace).

Step
You executed a single source line or machine instruction,
skipping procedure and function calls, with F8 (Run | Step
Over).

Breakpoint at __
Your program encountered a breakpoint that was set to stop
your program. The text after “at” is the address in your pro-
gram where the breakpoint occurs.

Window message breakpoint at __
Your program encountered a Windows message breakpoint
that was set to stop your program. The text after “at” is the
window procedure the message was destined for.

Turbo Debugger for Windows User’s Guide

Terminated, exit code __
Your program has finished executing. The text after “code” is
the numeric exit code returned to Windows by your program.
If your program does not explicitly return a value, a garbage
value might be displayed. You cannot run your program until
you reload it with Run | Program Reset.

Loaded
You either reset your program or loaded TDW and specified
both a program and the option that prevents the compiler
startup code from executing. Because no instructions have
been executed at this point, including those that set up your
stack and segment registers, if you try to examine certain data
in your program, you might see incorrect values.

Interrupt
You pressed the interrupt key (Ctrl-Alt-SysRg) to regain control.
Your program was interrupted and control passed back to the
debugger.

Exception __
A processor exception has occurred, which usually happens
when your program attempts to execute an illegal instruction
opcode. The Intel processor documentation describes each
exception code in complete detail.

The most common exception to occur with a Windows
program is Exception 13. This exception indicates that your
program has attempted to perform an invalid memory access.
(Either the selector value in a segment register is invalid or the
offset portion of an address points beyond the end of the
segment.) You must correct the invalid pointer causing the
problem.

Divide by zero
Your program has executed a divide instruction where the
divisor is zero.

Global breakpoint __at
A global breakpoint has been triggered. You are told the
breakpoint number and the location in your program where
the breakpoint occurred.

Chapter 5, Controlling program execution 81

The Run menu

The Run menu has a number of options for executing different
parts of your program. Since you use these options frequently,
most are available on function keys.

Run F9
Go to cursor F4
Trace into F7
Step over F8
Execute to... Alt-F9
Until return ATt-F8
Animate...

Back trace Alt-F4

Instruction trace Alt-F7

Arguments. ..
Program reset Ctr1-F2

Run
Runs your program at full speed. Control returns to TDW when
one of the following events occurs:
® Your program terminates.
m A breakpoint with a break action is encountered.
m You interrupt execution with Ctrl-Alt-SysAq.

Go to Cursor

Executes your program up to the line that the cursor is on in the
current Module window or CPU Code pane. If the current

window is a Module window, the cursor must be on a line of
source code.

Trace Into

Executes a single source line or assembly level instruction. If the
current window is a Module window, a single line of source code

is executed; if it's a CPU window, a single machine instruction. If
the current line contains any procedure or function calls, TDW
traces into the routine. If the current window is a CPU window,
pressing F7 on a CALL instruction steps to the routine being
called.

TDW treats object methods just like any other procedure or
function. F7 traces into the source code if it’s available.

82 Turbo Debugger for Windows User's Guide

Step Over

Executes a single source line or machine instruction, skipping
over any procedure or function calls. If the current window is a

Module window, this command usually executes a single source
line. If the current window is a CPU window, pressing F8on a
CALL instruction steps over the routine being called.

If you step over a single source line, TDW treats any function or
procedure calls in that line as part of the line. You don’t end up at
the start of one of the functions or procedures. Instead, you end
up at the next line in the current routine or at the previous routine
that called the current one.

If you are in a CPU window, TDW treats certain instructions as a
single instruction, even when they cause multiple assembly.
instructions to be executed. Here is a complete list of the
instructions TDW treats as single instructions:

CALL Subroutine call, near, and far
INT Interrupt call
LOOP Loop control with CX counter

LOOPZ Loop control with CX counter
LOOPNZ Loop control with CX counter

Also stepped over are REP, REPNZ, or REPZ followed by CMPS,
CMPS, CMPSW, LODSB, LODSW, MOVS, MOVSB, MOVSW,
SCAS, SCASB, SCASW, STOS, STOSB, or STOSW.

The Run | Step Over command treats a call to an object method
like a single statement and steps over it like any other procedure
or function call.

Execute To

Executes your program until the address you specify in the dialog
box is reached. The address you specify might never be reached if

a breakpoint action is encountered first or you interrupt
execution.

Until Return

Executes until the current procedure returns to its caller. This is
useful in two circumstances: When you have accidentally exe-
cuted into a function or procedure that you are not interested in

Chapter 5, Controlling program execution 83

84

Animate

Back Trace

Alt

Some restrictions apply to
using the Execution History
window. See page 86 for
more information.

>

=

Instruction Trace

Alt

with Run | Trace instead of Run | Step, or when you have deter-
mined that the current procedure works to your satisfaction, and
you don’t want to slowly step through the rest of it.

Performs a continuous series of Trace Into commands, updating
the screen after each one. (The effect is to run your program in
slow motion.) You can watch the current location in your source
code and see the values of variables changing. Press any key to
interrupt this command.

After you choose Run | Animate, TDW prompts you for a time
delay between successive traces. The time delay is measured in
tenths of a second; the default is 3.

If you are tracing (F7 or Alt-F7) through your program, Back Trace
reverses the order of execution. Reverse execution is handy if you
trace beyond the point where you think there may be a bug, and
want to reverse program execution back to that point. This feature
lets you “undo” the execution of your program by stepping
backward through the code, either a single step at a time or to a
specified point highlighted in the Execution History
window.Reverse execution is always available in the CPU
window. However, you can only execute source code in reverse if
full history is On. (Use the View | Execution History command to
bring up the Execution History window, then in the local menu
set Full History On.)

TDW will not execute in reverse any Windows code called by
your program unless you are in the CPU window and the code is
in a DLL you have selected for debugging.

Executes a single machine instruction. Use this command when
you want to trace into an interrupt, or when you're in a Module
window and you want to trace into a procedure or function that’s
in a module with no debug information (for example, a library
routine).

Since you will no longer be at the start of a source line, this
command usually places you in a CPU window.

Turbo Debugger for Windows User's Guide

Arguments

Program Reset

This command lets you set new command-line arguments for
your program. For a discussion of this command, see “Changing
the program arguments” on page 90.

Reloads from disk the program you’re debugging. You might use
this command

m When you've executed past the place where you think there is a
bug.

® When your program has terminated and you want to run it
again.

m If you're in a Module or CPU window, you've suspended your
Windows application program with Ctrl-Alt-SysRg, and you want
to terminate it and start over.

m If you've already loaded your application, you've just set
startup debugging for one or more dynamic link libraries
(DLLs), and you now want to debug those DLLs.

If you're in a Module or CPU window, the debugger sets the
current-line marker at the start of the program, but the display
stays exactly where you were when you chose Program Reset.
This behavior makes it easier for you to set the cursor near where
you were and run the program to that line.

If you chose Program Reset because you just executed one source
statement more than you intended, you can position the cursor up
a few lines in your source file and press F4 to run to that location.
Alternatively, if Full History had been on (see the local menu of
the View | Execution History window), you could have chosen
Run | Back Trace to step back through previously executed code
instead of choosing Program Reset.

The Execution History window

TDW has a special feature called execution history that keeps track
of each instruction as it’s executed (provided that you're tracing
into the code). You can examine these instructions and, if you like,

Chapter 5, Controlling program execution 85

Figure 5.5

The Execution History window

86

The local

menu

Inspect
Reverse execute

Full history

No

undo them to return to a point in the program where you think
there might be a bug. TDW can record about 400 instructions.

You can examine the execution history in the Execution History
window, which you open by choosing View | Execution History.

The Execution History window shows instructions already
executed that you can examine or undo. Use the highlight bar to
make your selection.

The execution history only keeps track of instructions that have
been executed with the Trace Into command (F7) or the Instruc-
tion Trace command (Alt-F7). It also tracks for Step Over, as long as
you don’t encounter one of the commands listed on page 83 or 87.
As soon as you use the Run command or execute an interrupt, the
execution history is deleted. (It starts being recorded again when
you go back to tracing.)

You cannot backtrace into an interrupt call.

If you step over a procedure or function call, you will not be able
to trace back beyond the instruction following the return.

Backtracing through a port-related instruction has no effect, since
you can’t undo reads and writes.

The local menu for the Instructions pane contains three options,
Inspect, Reverse Execute, and Full History.

Inspect

This command takes you to the command highlighted in the
Instructions pane. If it is a line of source code, you are shown that
line in the Module window; if there is no source code, the CPU
window opens, with the instruction highlighted in the Code pane.

Reverse Execute

This command reverses program execution to the location
highlighted in the Instructions pane. If you selected a line of

Turbo Debugger for Windows User’s Guide

source code, you are returned to the Module window; otherwise,
the CPU window appears with the highlight bar of the Code pane
on the instruction.

Waming! You can never reverse back over a section of your program that
you didn’t trace through. For example, if you set a breakpoint and
then pressed F9 to run until the breakpoint was reached, all your
reverse execution history will be thrown away.

Waming! The INT instruction causes any previous execution history to be
thrown out. You can’t reverse back over this instruction, unless
you press Alt-F7 to trace into the interrupt.

The following instructions do not cause the history to be thrown
out, but they cannot have their effects undone. You should look
out for unexpected side effects if you back up over these

instructions:
IN INSW
ouT OuUTSB
INSB ouTsSw
Full History

This command is a toggle. If it is set to On, backtracing is enabled.
If it is Off, backtracing is disabled.

Interrupting program execution

Because Windows applications are interactive programs, the best
way to debug one is to run the application and then interrupt it or
cause it to encounter a breakpoint.

As a primary debugging technique, stepping or tracing through a
Windows application can be of marginal utility because even-
tually you reach code that sits in a loop, waiting for a message for
a window. Instead, you should set code and message breakpoints
if possible, run your program until it encounters one of these
breakpoints, and then step or trace if necessary.

If you do step into the message loop, you can press the Alt-F5key
combination to see the application screen, but you won’t be able

to interact with the program. Instead, you can press F9 to run the
program so you can use the application’s windows. But what

Chapter 5, Controlling program execution 87

happens if you need to get back to TDW to track down a bug that
shows up while you're using one of your application’s windows?

What you can do is interrupt your program by pressing the Ctrl-
Alt-SysAq key combination. Once you're back in TDW, you can set
code or message breakpoints, set up views, look at any messages
you might have been logging, or whatever else you need to do to
track the bug. When you're ready to return to the application
again, press F9to run it.

When you return to TDW, if you see a CPU window without any
lines corresponding to lines in your code, you're probably in
Windows code. You can display the Module window and set
breakpoints or whatever else you need to do, but there are some
things you should not do:

m Single-step through your program. Attempting to single-step
after interrupting your application can have unpredictable
effects if your application was executing Windows code. A
typical result is that Windows terminates both your application
and TDW, generating the message, “Unrecoverable application
error.”

m Terminate or reload either your application or TDW. If you do,
Windows gets confused and hangs, forcing you to reboot. If
you do try to exit or reload in this situation, TDW displays the
following prompt in a dialog box:

Ctrl-Alt-SysRq interrupt, system crash possible, Continue?
At this point, the best course of action is to select No,
return to TDW and set a breakpoint you know your code will
hit, then run your application again and cause it to hit the
breakpoint and exit to TDW.

Program termination

88

When your program terminates and exits back to Windows, TDW
regains control. It displays a message showing the exit code that
your program returned to Windows. Once your program termi-
nates, using any of the Run menu options causes TDW to reload
your program.

The segment registers and stack are usually not correct when your
program has terminated, so do not examine or modify any pro-
gram variables after termination.

Turbo Debugger for Windows User’s Guide

Restarting a debugging session

TDW has a feature that makes restarting a debugging session as
painless as possible. When you're debugging a program, it’s easy
to go just a little too far and overshoot the real cause of the
problem. In that case, TDW lets you restart debugging but
suspends execution before the last few commands that caused
you to miss the problem that you wanted to observe. How? It lets
you reload your last program from disk, and preserves any
previous command-line arguments.

To reload the program you were debugging, choose Run | Pro-
gram Reset (Ctrl-F2). TDW reloads the program from disk, with
any data you have added since you last saved to disk. Reloading
is the safest way to restart a program. Restarting by executing at
the start of the program can be risky, since many programs expect
certain data to be initialized from the disk image of the program.

> Program Reset leaves breakpoints and watchpoints intact.

Opening a new program to debug

You load a new program to debug by choosing File | Open to open
the Enter Program Name to Load dialog box.

Figure 5.6
The Enter Program Name to
Load dialog box

donuthin.exe
dototal.exe
drwhappy .exe
echo.exe
hello.exe
little.exe

mytest.exe
pwrs.exe
reverse.exe
small.exe
tcdemo.exe

G:\NETFILES\DEBUG\PROGRAM\ ».EXE
BILDSP.EXE Nov 19, 1991 2:23pm 4592 bytes

You can enter a file name (extension .EXE) in the File Name input
box, or press Enter to activate a list box of all the .EXE files in the
current directory. Move the highlight bar to the file you want to
load and press Enter.

Chapter 5, Controlling program execution 89

Another way of specifying a file in the list box is to type in the
name of the file you want to load. The highlight bar in the Files
list box moves to the file that begins with the first letter(s) you
typed. When the bar is positioned on the file you want, press
Enter.

You can supply arguments to the program to debug by. placing
them after the program name, as follows:

myprog a b ¢

This command loads program MyProg with three command-line
arguments, 4, b, and c.

Changing the program arguments

If you forgot to supply some necessary arguments to your pro-
gram when you loaded it, you can use the Run | Arguments

command to set or chanoe the arcuments. Enter new arcuments

LULNIRGIR 1V OUL Ul LARIET AT Qi 5uiiiiliitd. Siiitil LiTVY Qiguinitans

exactly as you would following the name of your program on the
command line.

Once you have entered new arguments, TDW asks you if you
want to reload your program from disk. You should answer Yes,
because for most programs, the new arguments will only take
effect if you reload the program first.

90 ' Turbo Debugger for Windows User's Guide

Examining and modifying data

TDW provides a unique and intuitive way to examine and even
change your program’s data.

m Inspector windows let you look at your data as it appears in
your source file. You can “follow” pointers, scroll through
arrays, and see structures, records, and unions exactly as you
wrote them.

® You can also put variables and expressions into the Watches
window, where you can watch their values as your program
executes.

m The Evaluate/Modify dialog box shows you the contents of any
variable and lets you assign a new value to it.

This chapter assumes that you understand the various data types
that can be used in Turbo Pascal for Windows. If you are fairly
new to the language and have not yet explored its simple data
types (Char, Integer, Boolean, Word, Real, String, Longint,
Shortint, and so on), it would be helpful to first learn about them
before reading the chapter.

If you're familiar with the simple data types, parts of this chapter
are useful. When you've delved into the more complex data types
(arrays, pointers, PChars, records, files, sets, objects, and so on),
you can return to this chapter to learn more about looking at them
with TDW.

Chapter 6, Examining and modifying data 91

For how to examine or
modify arbitrary biocks of
memory as hex data bytes,
see Chapter 12.

The Data menu

This chapter shows you how to examine and modify variables in
your program. First, we explain the Data menu and its options.
We then show you how to point directly at data items in your
source modules. Finally, we introduce the Watches window and
describe the way that the data types appear in Inspector
windows.

Inspect...
Evaluate/modify... Ctr1-F4
Add watch... Ctri-F7

Function return

Inspect

>

Evaluate/Modify

See Chapter 9 for a
complete discussion of
expressions.

92

The Data menu lets you cheose how to examine and change pro-
gram data. You can evaluate an expression, change the value of a
variable, and open Inspector windows to display the contents of
your variables.

Prompts you for the variable that references the data you want to
inspect, then opens an Inspector window that shows the contents
of the program variable or expression. You can enter a simple
variable name or a complex expression. ‘

If the cursor is on a variable in a text pane when you issue this
command, the dialog box automatically contains the variable, if
any, at the cursor. If you select an expression in a text pane (using
Ins), the dialog box contains the selected expression.

Inspector windows really come into their own when you want to
examine a complicated data structure, such as an array of records
or a linked list of items. Since you can inspect items within an
Inspector window, you can “walk” through your program’s data
objects as easily as you scroll through your source code in the
Module window.

See the “Inspector windows” section later in this chapter for a
complete description of how Inspector windows behave.

Opens the Evaluate/Modify dialog box (Figure 6.1), which
prompts you for an expression to evaluate, then evaluates it
exactly as the compiler would during compilation when you
choose the Eval button.

Turbo Debugger for Windows User’s Guide

Figure 6.1
The Evaluate/Modify dialog
box

See Chapter 9 for a
discussion of format control.

If the cursor is in a text pane when you issue this command, the
dialog box automatically contains the variable, if any, at the
cursor. If you select an expression (using Ins), the dialog box
contains the marked expression.

Evaluate/modi f'

- [Cance! g

R

[Help o
I

N

ew value
ot available> | Modify o
I

Remember that you can add a format control string after the
expression you want to watch. TDW displays the result in a
format suitable for the data type of the result. To display the
result in a different format, put a comma (,) separator, then a
format control string after the expression. Displaying in a
different format is useful when you want to watch something, but
your program displays it in a format other than TDW'’s default
display format for the data type.

The dialog box has three fields.

m In the top field, you type the expression you want to evaluate.
This field is the Evaluate input box, and it has a history list just
like any other input box.

m The middle field displays the result of evaluating your
expression.

m The bottom field is an input box where you can enter a new
value for the expression. If the expression can’t be modified,
this box reads <Not available>, and you can’t move your cursor
into it.

Your entry in the New Value input box takes effect when you
choose the Modify button. Use Tab and Shift-Tab to move from one
box to another, just as you do in other dialog boxes. Press Esc from
inside any input box to remove the dialog box, or click the Cancel
button with your mouse.

Data strings too long to display in the Result input box are termi-
nated by an arrow (»). You can see more of the string by scrolling
to the right.

Chapter 6, Examining and modifying data . 93

If you're debugging an object-oriented Pascal program, the

@ Evaluate/Modify dialog box also lets you display the fields of an
object instance. You can use any format specifier with an instance
that can be used in evaluating a record.

When you're tracing inside a method, TDW knows about the
scope and presence of the Self parameter. You can evaluate Self
and follow it with format specifiers and qualifiers.

You cannot execute TDW also lets you call a method from inside the Evaluate/Modify
constructor or destructor dialog box. Just type the instance name followed by a dot,
methods in the Evaluate
window. followed by the method name, followed by the actual parameters

(or empty parentheses if there are no parameters). With these

declarations,
type
Point = object
X, Y . Integer;

Visible : Boolean;

constructor Init (InitX, InitY : Integer);

destructor Done; virtual;

procedure Show; virtual;

procedure Hide; virtual;

procedure MoveTo (NewX, NewY : Integer);
end;

var
APoint : Point;

you could enter any of these expressions in TDW’s Evaluate

window:
Expression Result
APoint. X 5 ($5) : Integer
APoint (5,23,FALSE) : Point
APoint. MoveTo @6FA4F : 00BE
APoint.MoveTo(10, 10) Calls method MoveTo
APoint.Show() Calls method Show

You can also use the Evaluate/Modify dialog box as a simple
calculator by typing in numbers as operands instead of program
variables.

Turbo Debugger for Windows User's Guide

Add Watch

Function Return

Prompts you for an expression to watch, then places the expres-
sion or program variable on the list of variables displayed in the
Watches window when you press Enter or choose the OK button.

If the cursor is in a text pane when you issue this command, the
dialog box automatically contains the variable at the cursor, if
any. If you select an expression (using Ins), the dialog box contains
the selected expression.

Shows you the value the current procedure is about to return. Use
this command only when the procedure is about to return to its
caller.

The return value is displayed in an Inspector window, so you can
easily examine return values that are pointers to compound data
objects.

Function Return saves you from having to switch to a CPU
window to examine the return value placed in the CPU registers.
And since TDW also knows the data type being returned and
formats it appropriately, this command is much easier to use than
a hex dump.

Pointing at data objects in source files

See Chapter 8 for a full
discussion of using Module
windows.

TDW has a powerful mechanism to relieve you from always
typing in the names of program variables that you want to
inspect. From within any Module window, you can place the
cursor anywhere within a variable name and use the local menu
Inspect command to create an Inspector window showing the
contents of that variable. You can also select an expression or
variable to inspect by pressing Ins and using the cursor keys to
highlight it before choosing Inspect.

Chapter 6, Examining and modifying data 95

The Watches window

Figure 6.2
The Watches window

See Chapter 9 fora
complete discussion of

scopes and when a variable

96

or parameter is valid.

Warning!

The Watches window lets you list variables and expressions in
your program whose values you want to track. You can watch the
value of both simple variables (such as integers) and complex
data objects (such as arrays). In addition, you can watch the value
of a calculated expression that does not refer directly to a memory
location. For example, x * y + 4.

2= 4=
'y

Choose View | Watches to access the Watches window. It holds a
list of variables or expressions whose values you want to watch.
For each item, the variable name or expression appears on the left
and its data type and value on the right. Compound values like
arrays and records appear with their values between parentheses.
If there isn’t room to display the entire name or expression, it is
truncated. '

When you enter an expression to watch, you can use variable
names that are not valid yet because they are in a procedure or
function that hasn’t been called. TDW lets you set up a watch
expression before its scope becomes active. This situation is the
only time you can enter an expression that can’t be immediately
evaluated.

If you mistype the name of a variable, the mistake won’t be
detected because TDW assumes it is the name of a variable that
will become available as your program executes.

Unless you use the scope-overriding mechanism discussed in
Chapter 9, TDW evaluates an expression in the Watches window
in the scope of the current location where your program is
stopped, as if the expression appeared in your program at that
place. If a watch expression contains a variable name that is not
accessible from the current scope—for example, if it’s private to
another module—the value of the expression is undefined and is
displayed as four question marks (222?).

When you're tracing inside an object method, you can add the Self
parameter to the Watches window.

Turbo Debugger for Windows User's Guide

The Watches
window local
menu

Watch

Edit

Remove

Delete All

Inspect

Change

See Chapter 9 for more
information on the
assignment operator and
type conversion (casting).

Chapter 6, Examining and modifying data

As with all local menus, press Alt-F10 to pop up the Watches
window local menu. If you have control-key shortcuts enabled,
press Ctrl with the first letter of the desired command to access it.

Watch...
Edit...
Remove
Delete all

Inspect
Change...

Prompts you for the variable name or expression to add to the
Watches window. It is added at the current cursor location.

Opens a dialog box in which you can edit an expression in the
Watches window. You can change any watch expression that’s
there, or enter a new one.

You can also invoke this command by pressing Enter once you've
positioned the highlight bar over the watch expression you want
to change. Press Enter or choose the OK button to put the edited
expression into the Watches window.

Removes the currently selected item from the Watches window.

Removes all the items from the Watches window. This command
is useful if you move from one area of your program to another,
and the variables you were watching are no longer relevant.
(Then use the Watch command to enter more variables.)

Opens an Inspector window to show you the contents of the
currently highlighted item in the Watches window. If the item is a
compound object (array or record), you can view all its elements,
not just the ones that fit in the Watches window.

Changes the value of the currently highlighted item in the
Watches window to the value you enter in the dialog box. If the
current language you're using permits it, TDW performs any
necessary type conversion exactly as if the assignment operator
had been used to change the variable.

97

Inspector windows

98

Data Inspector
windows

Scalars

An Inspector window displays your program data appropriately,
depending on the data type you're inspecting. Inspector windows
behave differently for scalars (for example, Char or Integer),
pointers (#), arrays (array [1..10] of Word), functions, records, and
sets.

The Inspector window lists the items that make up the data object
being inspected. The title of the window shows the expression or
the name of the variable being inspected.

The first item in an Inspector window is always the memory
address of the data item being inspected, expressed as a segment:
offset pair, unless it has been optimized to a register or is a
constant (for example, 3).

To examine the contents of a variable in an Inspector window as
raw data bytes, choose View | Dump while you’re in the Inspector
window. The Dump window comes up, with the cursor posi-
tioned to the data displayed in the Inspector window. You can
return to the Inspector window by closing the window with the
Window | Close command (Alt-F3), or clicking the close box with
your mouse.

The following sections describe the different Inspector windows
that can appear for two of the languages supported by TDW:
Pascal and assembler. The programming language used dictates
the format of the information displayed in Inspector windows.
Data items and their values always appear in a format similar to
the one they were declared with in the source file.

Remember that you don’t have to do anything special to cause the
different Inspector windows to appear. The right one appears
automatically, depending on the data you're inspecting.

Scalar Inspector windows show you the value of simple data
items, such as

Turbo Debugger for Windows User’s Guide

var
X : Integer;
Y : Longint;

These Inspector windows have only a single line of information
following the top line that gives the address of the variable. To the
left appears the type of the scalar variable (Byte, Word, Integer,
Longint, and so forth), and to the right appears its present value.
The value can be displayed as decimal, hex, or both. It’s usually
displayed first in decimal, with the hex values in parentheses
(using the Turbo Pascal hex prefix $). You can use TDWINST to
change how the value is displayed.

If the variable being displayed is of type Char, the character
equivalent is also displayed. If the present value does not have a
printing character equivalent, TDW uses a pound sign (#)
followed by a number to display the character value. This
character value appears before the decimal or hex values.

10: 3EF!
A Pascal scalar Inspector S810: 3

Figure 6.3 @[-] =Inspecting WordLen=3=[*][i]
[;unm 0 '»‘j]
window ;

Pointers Pointer Inspector windows in a Pascal program show you the
value of data items that point to other data items, such as

var
IP : “integer;
LP : "“pointer;

Pointer Inspector windows usually have only a single line of
information following the top line that gives the address of the
variable. To the left appears [1], indicating the first member of an
array. To the right appears the value of the item being pointed to.
If the value is a complex data item such as a record or an array,
however, only as much of it as possible is displayed, with the
values enclosed in parentheses.

If the pointer is of type PChar and appears to be pointing to a
null-terminated character string, more information appears
showing the value of each item in the character array. To the left
in each line appears the array index ([1], [2], and so on), and the
value appears to the right as it would in a scalar Inspector
window. In this case, the entire string is also displayed on the top
line, along with the address of the pointer variable and the
address of the string that it points to.

Chapter 6, Examining and modifying data 99

Figure 6.4

A Pascal pointer Inspector

100

window

Arrays —

Figure 6.5
A Pascal array Inspector
window

Records

You also get multiple lines if you open the Inspector window and
issue the Range local menu command, specifying a count greater
than 1.

[»]=Inspecting Temp=3=[1][+]

©8810:3EF4 : 8C10:00

PARMRECPTR

Array Inspector windows in Pascal programs show you the value
of arrays of data items, such as

var
A : array(l..10,1..20] of Integer;
B : array[l..50] of Boolean;

There is a line for each member of the array. To the left on each
line appears the array index of the item and to the right is its
present value. If the value is a complex data item such as a record
or an array, as much of it as possible is displayed, with the values
enclosed in parentheses.

You can use the Range command to examirie any portion of an
array. This is useful if the array has a lot of elements, and you
want to look at something in the middle of the array.

[w]=Inspecting LetterTable=3=[*]
@87D6:0058 -

[H=ﬂ

Record Inspector windows in Pascal programs show you the
value of the fields in your records. For example,

record
year : Integer;
month : 1..12;
day @ 1..31;
end

These Inspector windows have another pane below the one that
shows the values of the fields. This additional pane shows the
data type of the field highlighted in the top pane.

Turbo Debugger for Windows User's Guide

Figure 6.6
A Pascal record Inspector
window

Procedures and
functions

Figure 6.7
A Pascal procedure
Inspector window

Assembler data
Inspector
windows

Scalars

Figure 6.8
An assembler scalar
Inspector window

Chapter 6, Examining and modifying data

[#]=Inspecting LetterTable['A']=4=[%][4]
@87D6:0058

In the upper pane, procedure and function Inspector windows in
Pascal programs give you information about calling parameters.
These windows have a second pane in which the routine is
identified as a procedure or function. If the routine is a function,
you also see the data type it returns.

g-]=lnspecting ProcessLine=3=[1][{]
@83

Scalar Inspector windows in assembly language programs show
you the value of simple data items, such as

VAR1 DW 99
MAGIC DT 4.608
BIGNUM DD 123456

These Inspector windows have only a single line of information
following the top line that gives the address of the variable. To the
left appears the type of the scalar variable (BYTE, WORD,
DWORD, QWORD, and so forth), and to the right appears its
present value. The value can be displayed as decimal, hex, or
both. It'’s usually displayed first in decimal, with the hex values in
parentheses (using the standard assembler hex postfix H). You
can use TDWINST to change how the value is dlsplayed

HZ[-] =Inspecting Count=3=[4] [{]

72ED:0019
d

101

102

Pointers

Figure 6.9
An assembler pointer
Inspector window

Arrays

Pointer Inspector windows in assembler programs show you the
value of data items that point to other data items, such as

X DW 0
XPTR DW X
FARPTR DD X

Pointer Inspector windows usually have only a single line of
information following the top line that gives the address of the
variable. To the left appears [0], indicating the first member of an
array. To the right appears the value of the item being pointed to.
If the value is a complex data item such as an array, however, only
as much of it as possible is displayed, with the values enclosed in
braces ({}).

If the pointer is of type BYTE and appears to be pointing to a
null-terminated character string, more information appears,
showing the value of each item in the character array. To the left
in each line appears the array index ([1], [2], and so on), and the
value appears to the right as it would in a scalar Inspector win-
dow. In this case, the entire string is also displayed on the top
line, along with the address of the variable and the address of the
string that it points to.

You also get multiple lines if you open the Inspector window with
a Range local menu command and specify a count greater than 1.

[w]=Inspecting TextPtr=3=[*][{]=
@72ED:0017 : ds:000A [#test#text]a
' > (48h)

Array Inspector windows in assembler programs show you the
value of arrays of data items, such as

WARRAY DW 10 DUP (0)
MSG DB "Greetings",0

Turbo Debugger for Windows User’s Guide

There is a line for each member of the array. To the left on each
line appears the array index of the item and to the right is its
present value. If the value is a complex data item such as a
STRUC, however, only as much of it as possible is displayed.

You can use the Range local command to examine a portion of an
array. This is useful if the array has a lot of elements, and you
want to look at something in the middle of the array. When you
choose Range, you are prompted to enter a starting index
followed by a comma and the number of members to inspect.

[m]=Inspecting Text=3=[1][+]

i 1
Figure 6.10 @72ED:000A

An assembler array Inspector 0
window ‘e (65h)

1" 108 (6Ch)

08 (6Ch) :

=
A

Structures and unions Structure Inspector windows in assembler programs show you
the value of the fields in your STRUC and UNION data objects. For

example,
X STRUC
MEM1 DB ?
MEM? o ?
X ENDS
ANX X <1,ANX>
Y UNION
ASBYTES DB 10 DUP (?)
ASFLT DT ?
Y ENDS
Ay Y <2,1.0>

These Inspector windows have another pane below the one that
shows the values of the fields. This additional pane shows the
data type of the field highlighted in the top pane.

1 [w]=Inspecting Names=3=[1][¢]
Figure 6,11 [e 0oko
An assembler structure firstname "Carleton

Inspector window lastname "Whitehall
J '#' 35 (23h)

'M' 77 (4Dh)
30000 (7530h

Chapter 6, Examining and modifying data 103

The Inspector window local menu

Range. .. The commands in this menu give the Inspector window its real
Change. .. power. By choosing the Inspect local menu command, for
Inspect example, you create another Inspector w%ndow that lets you go
Descend ~ into your data objects. Other commands in the menu let you

New expression... . .
Type cast. .. inspect a range of values or a new variable.

Press Alt-F10 to pop up the Inspéctor window local menu. If you
have control-key shortcuts enabled, press Ctrl with the first letter
of the desired command to access it.

Range

Sets the starting element and number of elements that you want
to display. Use this command when you are inspecting an array,
and you only want to look at a certain subrange of all the
members of the array.

If you have a long array and want to look at a few members near
the middle, use this command to open the Inspector window at
the array index that you want to examine.

Change

Changes the value of the currently highlighted item to the value
you enter in the dialog box. If the current language permits it,
TDW performs any necessary casting exactly as if the appropriate
assignment operator had been used to change the variable. See
Chapter 9 for more information on the assignment operator and
casting.

Inspect

Opens a new Inspector window that shows you the contents of
the currently highlighted item. This is useful if an item in the
Inspector window contains more items itself (like a structure or
array), and you want to see each of those items. If the current
Inspector window is inspecting a procedure, issuing the Inspect
command shows you the source code for that procedure.

You can also invoke this command by pressing Enter after high-
lighting the item you want to inspect.

104 Turbo Debugger for Windows User’s Guide

You return to the previous Inspector window by pressing Esc to
close the new Inspector window. If you are through inspecting a
data structure and want to remove all the Inspector windows, use
the Window | Close command or its shortcut, Al-F3.

Descend

This command works like the Inspect local menu command
except that instead of opening a new Inspector window to show
the contents of the highlighted item, it puts the new item in the
current Inspector window. This is like a hybrid of the New
Expression and Inspect commands.

;> Once you have descended into a data structure like this, you can’t
g0 back to the previous unexpanded data structure. Use this
command when you want to work your way through a compli-
cated data structure or long linked list, but you don’t care about
returning to a previous level of data. This helps reduce the
number of Inspector windows onscreen.

New Expression

Prompts you for a variable name or expression to inspect, without
creating another Inspector window. This lets you examine other
data without having to put more Inspector windows on the
screen. Use this command if you are no longer interested in the
data in the current Inspector window.

Inspector windows for Pascal objects are somewhat different from
regular Inspector windows. See Chapter 10 for a description of
object type Inspector windows.

Type Cast

Chapter 11 explains on page Lets you specify a different data type (Byte, Word, Integer, Char
175 how ’;on‘j;g”s fgyhsz -pointer, gh2fp, 1h2fp) for the item being inspected. Typecasting is
PES " Useful if the Inspector window contains a symbol for which there
is no type information, as well as for explicitly setting the type for

untyped pointers.

Chapter 6, Examining and modifying data 105

106 Turbo Debugger for Windows User's Guide

Chapter 7, Breakpoints

Breakpoints

TDW uses the single term “breakpoint” to refer to the group of
functions that other debuggers usually call breakpoints,
watchpoints, and tracepoints.

Traditionally, breakpoints, watchpoints, and tracepoints are
defined like this: A breakpoint is a place in your program where
you want execution to stop so that you can examine program
variables and data structures. A watchpoint causes your program
to be executed one instruction or source line at a time, watching
for the value of an expression to become true. A tracepoint causes
your program to be executed one instruction or source line at a
time, watching for the value of certain program variables or
memory-referencing expressions to change.

TDW unifies these three concepts by defining a breakpoint in
three parts:

m the location in the program where the breakpoint occurs
m the condition under which the breakpoint is triggered
m the action that takes place when the breakpoint triggers

The location can be either a single source line in your program or it
can be global in context; a global breakpoint checks the break-
point condition after the execution of each source line or
instruction in your program.

The condition can be

m always
m when an expression is true

107

See Chapter 11, page 164,
for a description of how to
set a message breakpoint.

108

® when a data object changes value
m when a Windows message comes in

A pass count can also be specified, requiring that a condition be
true a designated number of times before the breakpoint is
triggered.

The action taken when a breakpoint triggers can be one of the
following:

m stop program execution (a breakpoint)
m log the value of an expression

m execute an expression (code splice)

m enable a group of breakpoints

m disable a group of breakpoints

In this chapter, you’ll learn about the Breakpoint and Log
windows; how to set simple breakpoints, conditional breakpoints,
and breakpoints that log the value of your program variables; and
how to set breakpoints that watch for the exact moment when a
program variable, expression, or data object changes value.

When debugging, you’ll often want to set a few simple break-
points to make your program pause execution when it reaches
certain locations. You can set or clear a breakpoint at any location
in your program by simply placing the cursor on the source code
line and pressing F2. You can also set a breakpoint on any line of
machine code by pressing F2 when you are pointing at an
instruction in the Code pane of a CPU window.

If you have a mouse, just click either of the leftmost two columns
of the line where you want to set or remove a breakpoint. (If
you're in the correct column, an asterisk (*) appears in the
position indicator.)

There are two ways to access the dialog boxes for setting and
customizing breakpoints. The Breakpoints menu offers a quick
approach for setting breakpoints, and the Breakpoints window
provides a view of the breakpoints already set, and gives access to
the dialog boxes that control breakpoint settings.

Turbo Debdgger for Windows User’s Guide

The Breakpoints menu

Toggle

At
See page 114 for a
description of the Breakpoint

e /] e

TS H R
UHONS Uidioy vox,

Changed memory
global

For more information, see the
"Changed memory
breakpoints” section on
page 121.

Expression true global

For more information, see
"Conditional expressions” on
page 122,

Hardware breakpoint

For more information, see
page 123.

Delete all

Chapter 7, Breakpoints

Access the Breakpoints menu at any time by pressing the Alt-B hot
key.

Toggle F2
At... Alt-F2
Changed memory global...
Expression true global...
Hardware breakpoint...
Delete all

The Toggle command sets or clears a breakpoint at the currently
highlighted address in the Module or CPU window. The hot key
is F2.

At lets you set a breakpoint at a specific location in your program.
When selected, At opens the Breakpoint Options dialog box, from
which you can set all breakpoint options. Alf-F2is the hot key for
At.

Changed Memory Global sets a global breakpoint that’s triggered
when an area of memory changes value. You are prompted for
the area of memory to watch with the Enter Memory Address,
Count input box. The variable expression entered is checked for
change each time a line of source code is executed.

Expression True Global sets a global breakpoint that is triggered
when the value of a supplied expression is true (nonzero). You are
prompted for the expression to evaluate with the Enter

Expression for Condition Breakpoint input box. The expression
entered is evaluated each time a line of source code is executed.

Use this command to access the Hardware Breakpoints Options
dialog box. You must have the proper system setup in order to
use hardware debugging.

The Delete All command erases all the breakpoints you've set. Use
this command when you want to start over from scratch.

109

The Breakpoints window

Figure 7.1
The Breakpoints window

The Breakpoints
window local
menu

Set Options

For a detailed explanation of
the Breakpoint Options
dialog box, see page 114.

110

The Breakpoints window is accessed by choosing the View |
Breakpoints command. This gives you a way of looking at and
adjusting the conditions that trigger a breakpoint.

3=[41 [+

The Breakpoints window has two panes; the Breakpoint List (left
pane) shows a list of all the addresses at which breakpoints are set
and the Breakpoint Detail (right pane) shows the details of the
breakpoint highlighted in the left pane. Although a breakpoint
can have several sets of actions and conditions associated with it,
only the first set of details is displayed in the Breakpoint Detail
pane.

The Breakpoints window has a local menu, which you access by
pressing Alt-F10. If you have control-key shortcuts enabled, press
Ctrl with the first letter of the command to access that command
directly.

The commands in this menu let you add new breakpoints, delete
existing breakpoints, and change how a breakpoint behaves.

Set options...
Add...

Remove

Delete all
Inspect
Group...

Once a breakpoint is set, the Set Options command opens the
Breakpoint Options dialog box, allowing you to modify the
breakpoint. Using this box, you can

m declare a global breakpoint

m disable/enable the breakpoint

m attach the breakpoint to a specific group

m access the Conditions and Actions dialog box

Turbo Debugger for Windows User's Guide

Add

Remove

Delete all

Inspect

Chapter 7, Breakpoints

The Add command on the Breakpoints local menu opens the
Breakpoint Options dialog box, much like the Set Options
command does. The difference is that the cursor is positioned on
an empty Address text box. Enter the address for which you’d
like the breakpoint to be set into the Address text box. For
example, if you'd like to set a breakpoint at line number 3201 in
your Pascal source code, enter MODNAME. 3201 into the text box. If the
line of code is in a module not displayed in the Module window,
type the module name, followed by a period (.), and the line
number. For example: OTHERMOD.. 3201.

The Add command can also be accessed by simply typing an
address into the Breakpoint Window. After typing the first
character of the address, the Breakpoint Options dialog box
opens, placing you in the Address text box.

Once you've entered the breakpoint address, use the other
commands in the Breakpoint Options dialog box to complete the
breakpoint entry.

The Remove command erases the currently highlighted break-
point. Delis the hotkey for this command.

Delete All removes all breakpoints, both global and those set at
specific addresses. You will have to set more breakpoints if you
want your program to stop on a breakpoint. Use this command
with caution!

The Inspect command displays the source code line or assembler
instruction that corresponds to the currently highlighted break-
point item. If the breakpoint is set at an address that corresponds
to a source line in your program, a Module window is opened
and set to that line. Otherwise, a CPU window is opened, with the
Code pane set to show the instruction at which the breakpoint is
set.

You can also invoke this command by pressing Enter once you
have the highlight bar positioned over a breakpoint.

111

Group The Group command allows you to gather breakpoints into
groups. A breakpoint group is identified by a positive integer,
generated automatically by TDW or assigned by you. The
debugger automatically assigns a new group number to each
breakpoint as it’s created. The group number generated is the
lowest number not already in use. Thus, if the numbers 1, 2, and 5
are already used by groups, the next breakpoint created is
automatically given the group number 3.

Once a breakpoint is created, you may modify the breakpoint
group number from the Breakpoint Options dialog box, placing
the breakpoint into a group associated with other breakpoints.
Grouping breakpoints together allows you to enable, disable, or
remove a collection of breakpoints with a single action.

When the Group command is chosen from the Breakpoint
window’s local menu, the Edit Breakpoint Groups dialog box is
displayed. This dialog box shows a listing of the current
breakpoint groups and allows you to easily collect all functions
within a module into a single group.

Figure 7.2
The Edit Breakpoint Groups .38 1
dialog box 3 TDDEMOW. 40

Groups

The Groups list box displays the currently assigned breakpoint
groups.

Add
The Add button activates the Add Group dialog box.

112 Turbo Debugger for Windows User’s Guide

Figure 7.3
The Add Group dialog box

*) Modules
() Classes

The Add Group dialog box has a single list box and a single set of
radio buttons that allow you to add all procedures in a single
module, or all methods contained in an object, to a breakpoint
group..

m The Module/Class list box displays a list of the modules or
objects contained in the program loaded into the Module
window. Highlight the desired module or object, then press OK
to set breakpoints on all procedures or methods. All
breakpoints set are collected into a single breakpoint group.

® Two radio buttons allow you to select what is displayed in the
Module/Class list box:

e The Modules radio button selects all modules contained in
the current program, displaying them in the Module/Class
list box.

o The Classes radio button selects all the Pascal objects
contained in the current program for display in the
Module/Class list box.

Delete

The Delete button in the Edit Breakpoint Groups dialog box
removes the group currently highlighted in the Groups list box.
All breakpoints in this group, along with their settings, will be
erased.

Enable

The Enable button activates a breakpoint group that has been
previously disabled.

Chapter 7, Breakpoints 113

The Breakpoint
Options dialog
box

Figure 7.4

The Breakpoint Options
dialog box

Address

Group ID

See page 112 fora
description of breakpoint
groups.

Global

For more information on
global breakpoints, see
page 121.

114

Disable

The Disable command temporarily masks the breakpoint group
that is currently highlighted in the Groups list box. Breakpoints
that have been disabled are not erased; they are merely set aside
for the current debugging session. Enabling the group reactivates
all the settings for all the breakpoints in the group.

The Breakpoint Options dialog box is reached from the
Breakpoints | At command, and from the Set Options and Add
commands on the Breakpoints window local menu.

[1]
Address

| TODEMOW.43 [] Global Qi OK]

Group ID

(L[] Disabled B Cancel |

Conditions and actions

tio

Breakpoint op

IiIiiiiii'iii|ii'iiiiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIlIII e

The Address text box contains the address tag associated with the
currently highlighted breakpoint. Normally, you will not edit this
field. However, if you want to change the name of the tag
associated with the breakpoint, type the new name into the
Address text box.

The Group ID text box allows you to assign the current
breakpoint to a new or existing group. A breakpoint group is
identified by a unique positive integer.

Global, when checked, enables global checking. This means that
every time a source line is executed, the breakpoint conditions
will be checked for validity. Because global breakpoints are tested
after every line of code is executed, the Address field is set to <not
available> since it is no longer pertinent.

When you set a global breakpoint, you must set a condition that
will trigger the global breakpoint. Otherwise, you'll end up with a
breakpoint that activates on every line of source code (if this is the
effect you want to achieve, use the Run | Trace Into command on
the Main menu).

Turbo Debugger for Windows User’s Guide

Disabled

Conditions and Actions

Change

Add

Delete

The Conditions
and Actions
dialog box

Chapter 7, Breakpoints -

The Disabled check box turns off the current breakpoint. While
this command is similar to the Toggle command on the
Breakpoints menu (see page 109), Disable does not clear the
breakpoint of its settings (as does the Toggle command). Disable
simply masks the breakpoint until you want to reenable it by
unchecking this box. When the breakpoint is reenabled, all
settings previously made to the breakpoint will become effective.

This check box is useful if you have defined a complex breakpoint
that you don’t want to use just now, but will want to use again
later. It saves you from having to delete the breakpoint, and then
reenter it along with its complex conditions and actions.

The Conditions and Actions list box displays the set of conditions
and actions associated with the current breakpoint.

The Change button, when selected, opens up the Conditions and
Actions dialog box (see the next section). With this command, you
can edit the item currently highlighted in the Conditions and
Actions list box.

To add a new set of conditions and actions to the current
breakpoint, select Add. Like the Change command above, Add
opens the Conditions and Actions dialog box.

The Delete command removes the currently highlighted item in
the Condition and Actions list box from the breakpoint definition.

When you choose either the Change or the Add button from the
Breakpoint Options dialog box, you're presented with the
Conditions and Actions dialog box.

116

Figure 7.5
The Conditions and Actions
dialog box

See "Customizing
breakpoints” on page 120 for
details on modifying
breakpoints.

The condition radio
buttons

See page 121 for more
information on Changed
memory breakpoints.

116

[8]=———=——=—=—21-—onditions and action
Condition
Always
() Changed memory () Execute
(-; Expression true () Log
() Hardware () Enable group
() Disable

Condition expression Action expression
Brea

Pass count

Hardware. ..

When a breakpoint is set on a line of source code, its default
characteristics are Always Break execution when the line of code
is encountered. With the Conditions and Actions dialog box, you
can customize the conditions under which the breakpoint will be
activated and specify different actions that take place once the
breakpoint does trigger.

You'll customize breakpoints through two sets of radio buttons
and three text entry boxes. In addition, for global breakpoints, a
Hardware button leads to the Hardware Breakpoints Options
dialog box, allowing you to specify hardware breakpoint
conditions.

The Condition radio buttons have four settings:

>
=
L
=98
)
=
n

T i 101
need be true for the breakpomt trigger; it will be t 1ggered each
time program execution encounters the breakpoint.

Changed memory

A Changed Memory breakpoint watches a memory variable or
object; the breakpoint is triggered if the object changes value. Use
the Condition Expression input box to enter an expression
representing the data object you want to watch.

Turbo Debugger for Windows User’s Guide

See page 122 for details on
expressions.

See page 123 for more
information about hardware
breakpoints.

The Hardware | Breakpoint
command offers an easy
way to set hardware
breakpoints.

The action radio
buttons

Chapter 7, Breakpoints

Expression true

The Expression True button allows the breakpoint to be triggered
when an expression becomes true (nonzero). Use the Condition
Expression input box to enter an expression that’s evaluated each
time the breakpoint is encountered.

Hardware

Causes the breakpoint to be triggered by the hardware-assisted
device driver. Because you can use hardware assistance only with
a global breakpoint, you must check the Global check box in the
Breakpoint Options dialog box before you can access this option.

You must select the Hardware radio button before the Hardware
button at the bottom of the dialog box can become active. Pushing
that button displays the Hardware Breakpoint Options dialog
box. The choices you can make in this box are described in the
online text file HDWDEBUG.TD.

The Action radio buttons have five settings:

Break

Break causes your program to stop when the breakpoint is
triggered. The TDW screen reappears, and you can once again
enter commands to look around at your program’s data
structures.

Execute

Execute causes an expression to be executed. Enter the expression
in the Action Expression input box. The expression should have
some side effect, such as setting a variable to a value. By executing
an expression that has side effects each time a breakpoint is
triggered, you can effectively “splice in” new pieces of code
before a given source line. This is useful when you want to alter
the behavior of a routine to test a diagnosis or bug fix. This saves
you from going through the compile-and-link cycle just to test a
minor change to a routine.

Of course, this technique is limited to the insertion of an expres-
sion before an already existing line of code is executed; you can’t
use this technique to modify existing source lines directly.

117

See Chapter 9 for a
description of expressions
and side effects.

Setting conditions and
actions

Condition expression

For more information on
specifying breakpoint
actions, see the “"Action
Expression” section that
follows.

118

Log

The Log button causes the value of an expression to be recorded
in the Log window. You are prompted for the expression whose
value you want to log. Be careful that the expression doesn’t have
any unexpected side effects.

Enable group

The Enable Group action button allows for a breakpoint to
reactivate a group of breakpoints that have been previously
disabled.

Disable group

The Disable Group radio button lets you disable a group of
breakpoints. When a group of breakpoints is disabled, the
breakpoints are not erased, they are simply masked for the
debugging session.

The most important step when setting up breakpoints is
specifying the conditions under which the breakpoint triggers and
specifying the actions to be taken once the breakpoint takes effect.
Two text boxes control these settings, the Condition Expression
text box and the Action Expression text box.

When you choose either a Changed Memory, Expression True, or
Hardware Condition radio button, you must provide a set of
conditions so TDW knows when to trigger the breakpoint. A
condition set consists of one or more expressions; each condition
has to evaluate true in order for the whole set to evaluate true.

A condition set is associated with a set of actions. When the
condition set evaluates true, the corresponding action set is
performed.

To add a condition set to a breakpoint,

1. Select either the Changed Memory, Expression True, or
Hardware radio button.

2. Select the Add button located under the Condition Expression
text box. ’

3. Enter the condition or variable expression into the Condition
Expression text box.

Turbo Debugger for Windows User’s Guide

Action expression

Chapter 7, Breakpoints

4. If you want more than one variable or condition to be tested
for a particular action set, repeat steps 2 and 3 until all
expressions have been added to the Condition Expression text
box.

5. Once you've specified‘ a condition set, use the Action
Expression text box to list the action(s) you’d like to take when
the breakpoint triggers.

A single breakpoint may have several condition and action sets
associated with it. If you want more than one set of conditions
and actions assigned to a single breakpoint, choose OK after you
have entered the first series of conditions and actions. This will
close the Conditions and Actions dialog box and return you to the
Breakpoint Options dialog box. From here, choose Add to enter a
new set of conditions and actions. When a breakpoint has
multiple condition and action sets, each one will be evaluated in
the order that they were entered. If more than one action set
evaluates to true, then more than one set of actions will be
performed.

The Delete button located below the Condition Expression text
box lets you remove the currently highlighted expression from the
Condition Expression text box. Select this button if you want to
delete a condition from the condition set.

When either an Execute, Log, Enable Group, or Disable Group
Action radio button is chosen, an action set must be provided so
TDW knows what to do when the breakpoint triggers. An action
set is composed of one or more actions.

To add an action set to a breakpoint,

1. Select either the Execute, Log, Enable Group, or Disable Group
radio button.

2. Select the Add button located under the Action Expression
text box.

3. Enter the action into the Action Expression text box.

To perform more than one action when the breakpoint
triggers, repeat steps 2 and 3 until all actions have been added
to the Action Expression text box.

4. When you have finished entering actions, choose OK from the
Conditions and Actions dialog box.

119

Pass count

If the Enable Group or Disable Group radio button is chosen,
simply type the breakpoint group number into the Action
Expression text box to reference the group that you want to
enable or disable.

The Delete button located below the Action Expression text box
lets you remove the currently highlighted action from the action
set.

The Pass Count input box lets you set the number of times the
breakpoint condition set must be met before the breakpoint is
triggered. The default number is 1. The pass count is decremented
only when the entire condition set attached to the breakpoint is
true. This means that if you set a pass count to n, the breakpoint is
triggered the nth time that the condition set is true.

Customizing breakpoints

120

Simple
breakpoints

In addition to simply stopping your program at a particular point,
greater control can be given to debugging by stipulating when a
breakpoint should take action, and what it should do when it
triggers.

When a breakpoint is initially set, it is given the default setting of
Always Break. Once a simple breakpoint is set, the actions and
conditions of the breakpoint may be customized. There are a
number of ways to set a simple breakpoint, each one being
convenient in different circumstances:

m Move to the desired source line in a Module window (or Code
pane of a CPU window) and issue the Breakpoints | Toggle
command (or press F2, or click either of the first two characters
of the line with your mouse). Doing this on a line that already
has a breakpoint set causes that breakpoint to be deleted.

m Issue the Add local menu command from the Breakpoint List
pane of the Breakpoints window and enter a code address at
which to set a breakpoint. (A code address has the same format
as a pointer in the language you’'re using. See Chapter 9 about
expressions.)

Turbo Debugger for Windows User’s Guide

Global
breakpoints

>

You must check Global if you
want to set hardware
breakpoints.

The Breakpoints menu offers
shortcuts for defining global
breakpoints. For more
information on the Changed
Memory Global and
Expression True Global
commands, see page 109.

Changed
memory
bbreakpoints

Chapter 7, Breakpoints

m Issue the Breakpoints | At command to set a breakpoint at the
current line in the Module window.

When a breakpoint is made global, TDW will check the
breakpoint on the execution of every line of code. If the set of
conditions evaluates true, then the corresponding set of actions
will be executed.

If you want a global check to occur on every machine code
instruction, set a global breakpoint, and press F9 from within the
CPU window. This type of code monitoring should only be done
once you have isolated a small area of your program known to
contain a problem. The CPU window can then be used to locate
the exact position of the difficulty.

Since a debugger action will occur on every line of source code or
machine instruction, global breakpoints greatly slow the
execution of your program. Be careful with your use of global
breakpoints; they should be used only if you want to find out
exactly when a variable changes value, when some condition
becomes true, or when your program is “bashing” data.

Often, global breakpoints are used to watch for when a data item’
changes value. In this situation, TDW checks the area of memory
for change after the execution of every line of code. As an alterna-
tive to a global breakpoint, you may want to specify a breakpoint
that only watches for a change when a specific source statement is
reached. This is a lot more efficient, since it reduces the amount of
processing TDW does in order to detect the change (in this case,
TDW isn’t concerned with when the item has changed, only that it
has changed).

When you want to find out where in your program a certain data
object is being changed, first set a breakpoint using one of the
techniques outlined in the preceding section. Then, using the
Changed Memory radio button in the Conditions and Actions
dialog box, enter an expression that refers to the memory area you
want to watch along with an optional count of the number of

" objects to track. The total number of bytes in the watched area is

the size of the object that the expression references times the

121

Conditional
expressions

Scope of breakpoint
expressions

See Chapter 9 for a
complete discussion of
scopes and scope overrides.

122

number of objects. For example, suppose you have declared the
following Pascal array:

Temperature: array[l..50] of Integer;

If you want to watch for a change in the first ten elements of this
array, enter the following item into the Condition Expression
input box:

Temperature(1], 10

The area watched is 20 bytes long, since an Integer is 2 bytes and
you said to watch 10 of them.

If the Changed Memory breakpoint is global, your program
executes much more slowly because the memory area is checked
for change after every source line has been executed. If you've
installed a hardware device driver, TDW will try to set a
hardware breakpoint to watch for a change in the data area.
Different hardware debuggers support different numbers and
types of hardware breakpoints. You can see if a breakpoint is
using the hardware by opening a Breakpoint window with the
View | Breakpoints command. Any breakpoint that is hardware
assisted will have an asterisk (*) beside it. These breakpoints are
much faster than global breakpoints that are not hardware
assisted.

There are many occasions when you won’t want a breakpoint to
be triggered every time a certain source statement is executed,
particularly if that line of code is executed many times before the
occurrence you are interested in. TDW gives you two ways to
qualify when a breakpoint is actually triggered: pass counts and
conditions.

Both the action that a breakpoint performs and the condition
under which it is triggered can be controlled by an expression you
supply. That expression is evaluated using the scope of the
address at which the breakpoint is set, not the scope of the current
location where the program is stopped. This means that your
breakpoint expression can use only variable names that are valid

Turbo Debugger for Windows User’s Guide

at the address in your program where you set the breakpoint,
unless you use scope overrides.

If you want to set a breakpoint for an expression in a module that
isn’t currently loaded and TDW cannot find that expression, you
can use either a scope override to specify the file that contains the
expression or the View | Module command to change modules.

If you use variables that are local to a routine as part of an expres-
sion, that breakpoint will execute much more slowly than a break-
point that uses only global or module local variables.

Hardware

bbreakpoints A hardware breakpoint uses hardware debugging support, either
s . . through a hardware debugging board or through the debugging
ee page 12 for information X . ;
on setting up device drivers Tegisters of the Intel 80386 (or higher) processor. If your system is
for hardware debugging. set up for hardware debugging (File | Get Info shows Breakpoints
set to Hardware), you can set a hardware breakpoint using one of
the following methods:

m Choose Breakpoints | Changed Memory Global, the most
common use of hardware breakpoints.
m Choose Breakpoints | Hardware.

m Display the Breakpoint Options menu (choose Breakpoints | At
or the Set Options command of the View | Breakpoints window
local menu), then do the following;:

. Check the Global check box.

. Push the Change button.

. In the Conditions and Actions dialog box, choose the
Hardware radio button to turn on the Hardware pushbutton
at the bottom of the dialog box.

4. Push the Hardware pushbutton to display the Hardware
Breakpoint Options dialog box.

5. Choose the options you want from this dialog box. The
options are described in the online text file
HDWDEBUG.TD.

W N =

Logging variable

values Sometimes, you may find it useful to log the value of certain
variables each time you reach a certain place in your program.
You can log the value of any expression, including, for example,

Chapter 7, Breakpoints 123

Be careful of side effects

when logging expressions.

The Log window

the values of the parameters that a procedure is called with. By
looking at the log each time the procedure is called, you can
determine when it was called with erroneous parameters.

Choose the Log radio button from the Breakpoint Options dialog
box. You are prompted for the expression whose value is to be
logged each time the breakpoint is triggered.

124

Figure 7.6
The Log window

You create a Log window by choosing the View | Log command.
This window lets you review a list of significant events that have
taken place in your debugging session.

The Log window shows a scrolling list of the lines output to the
window. If more than 50 lines have been written to the log, the
oldest lines are lost from the top of the scrolled list. If you want to
change the number of lines in the list, use the TDWINST
customization program (described in the online text file
UTILS.TDW). You can also preserve the entire log, continuously
writing it to a disk file, by using the Open Log File local menu
command.

Here’s a list of what can cause lines to be written to the log:

m Your program stops at a location you specified. The location it
stops at is recorded in the log.

® You issue the Add Comment local menu command. You are
prompted for a comment to write to the log.

m A breakpoint is triggered that logs the value of an expression.
This value is put in the log.

® You use the Edit| Dump Pane to Log command (from the menu
bar) to record the current contents of a pane in a window.

m You are debugging a Windows application and use the Display
Windows Info command on the Log window local menu to
write global heap information, local heap information, or the
module list to the log.

Turbo Debugger for Windows User's Guide

The Log window
local menu

Open log file...

Close log file

Logging Yes

Add comment...

Erase log

Display Windows info...

Open Log File

Close Log File

Logging

Add Comment

Chapter 7, Breakpoints

® You are debugging a Windows application, have used the
View | Windows Messages command to display the Windows
Messages window, and are now in the local menu of the
Messages pane of that window. You toggle Send to Log
Window to Yes so all messages coming to this window will also
go to the Log window.

The commands in this menu let you control writing the log to a
disk file, stopping and starting logging, adding a comment to the
log, clearing the log, and writing information about a Windows
program to the log.

Alt-F10 pops up the Log window local menu. If you have control-
key shortcuts enabled, pressing Ctrl and the first letter of the
command accesses the command directly.

Causes all lines written to the log to be written to a disk file as
well. A dialog box appears that prompts you for the name of the
file to write the log to (or you can select a directory and file from
the list boxes).

When you open a log file, all the lines already displayed in the log
window’s scrolling list are written to the disk file. This lets you
open a disk log file after you see something interesting in the log
that you want to record to disk.

If you want to start a disk log that does not start with the lines
already in the Log window, first choose Erase Log before
choosing Open Log File.

Stops writing lines to the log file specified in the Open Log File
loca.l menu command, and closes the file.

Enables or disables the log, controlling whether anything is
actually written to the Log window.

Lets you insert a comment in the log. You are prompted for a line
of text that can contain any characters you want.

125

Display Windows I

126

Erase Log

Clears the log list. The Log window will now be blank. Only the
log in memory is affected, not the parts of the log that have been
written to a disk file.

Displays the Windows Information dialog box, which lets you list
global heap information, local heap information, or the list of
modules making up your application. See page 166 in Chapter 11
for an explanation of how to use this feature.

Turbo Debugger for Windows User’s Guide

Examining files

TDW treats disk files as a natural extension of the program you're
debugging. You can examine any file on the disk, viewing it either
as ASCII text or as hex data.

This chapter shows you how to examine disk files that contain
your program source code and other files on disk.

Examining program source files

Loading and debugging
Windows DLL modules is
described in Chapter 11 on
page 169.

Chapter 8, Examining files

Program source files are your source files that are compiled to
generate an object module (an .EXE file). You usually examine
them when you want to look at the behavior or design of a
portion of your code. During debugging, you often need to look
at the source code for a routine to verify either that its arguments
are valid or that it is returning a correct value.

As you step through your program, TDW automatically displays
the source code for the current location in your program.

Files that are included in a source file by a compiler directive and
that generate line numbers are also considered to be program
source files, even though they don’t appear in the Pick a Module
list pane when you choose View | Module. To select one of these
files, you must use the local menu File command.

You should always use a Module window to look at your
program source files because doing so informs TDW that the file

127

The Module
window

Figure 8.1
The Module window

See page 170 for a

description of this Dialog box.

When you run TDW, you need

L

both the .EXE file and the
original source file.

is a source module. TDW then lets you do things like setting
breakpoints or examining program variables simply by moving to
the appropriate place in your file. These techniques and others are
described in the following sections.

Before you can open a module window, you must have a program
loaded. You create a Module window by choosing the View |
Module command from the menu bar (or pressing the hot key,
F3).

—[#]=Module: TDDEMOW File: TDDEMOW.PAS 217 1=[t]1[{]1x
end; A

Writeln;
end; { ParmsOnHeap }
» begin { program }
Init;
Buffer := GetLine;
begin
L]
8
v
1

while Buffer <> '' do
ProcessLine(Buffer);
Buffer := Getline;
end;
ShowResults;
ParmsOnHeap;
end.

A dialog box appears in which you can enter the name of the
module or DLL you want to view.

TDW then loads the source file for the module you select. If you
select a source module (and not a DLL), TDW searches for the
source file in the following places:

1. in the directory where the compiler found the source file

2. in the directories specified by the Options | Path for Source
command or the —sd command-line option

3. in the current directory
4. in the directory that contains the program you're debugging

Module windows show the contents of the source file for the
module you've selected. The title of the Module window shows
the name of the module you're viewing, along with the source file
name and the line number the cursor is on. An arrow (») in the
first column of the window shows the current program location
(CS:IP).

Turbo Debugger for Windows User's Guide

The Module
window local
menu

Inspect
Watch

Module...
File...

Previous
Line...
Search...
Next
Origin
Goto...

Inspect

Watch

If the cursor isn’t currently on
a variable, you’re prompted
to enter one.

Module

Chapter 8, Examining files

If the word modified appears after the file name in the title, the file
has been changed since it was last compiled or linked to make the
program you are debugging. In this case, the routines in the
updated source file may no longer have the same line numbers as
those in the version used to build the program you are debug-
ging. If the line numbers are different, the arrow that shows the
current program location (CS:IP) will be displayed on the wrong
line.

The Module window local menu provides a number of com-
mands that let you move around in the displayed module, point
at data items and examine them, and set the window to display a
new file or module.

You will probably use this menu more than any other menu in
TDW, so you should become quite familiar with its various
options.

Use the Alt-F10 key combination to pop up the Module window
local menu. If you have control-key shortcuts enabled, you can
access local menu commands without popping up the menu: Use
the Ctrl key with the highlighted letter of a command to access that
command (for example, Ctrl-S for Search).

Opens an Inspector window to show you the contents of the
program variable at the current cursor position. If the cursor isn’t
currently on a variable, you're prompted to enter one.

Because this command saves you from having to type in each
name you are interested in, you’ll end up using it a lot to examine
the contents of your program variables.

Adds the variable at the current cursor position to the Watches
window. Putting a variable in the Watches window lets you
monitor the value of that variable as your program executes.

Lets you view a different module by picking the one you want
from the list of modules displayed. This command is useful when
you are no longer interested in the curréit module, and you don’t
want to end up with more Module windows onscreen.

129

130

File

Previous

Line

Search

Next

Lets you switch to view one of the other source files that makes
up the module you are viewing. Pick the file that you want to
view from the list of files presented. Most modules only have a
single source file that contains code. Other files included in a
module usually only define constants and data structures. Use
this command if your module has source code in more than one
file.

Use View | Module to look at the first file. If you want to see more
than one, use View | Another | Module to open subsequent
Module windows.

Returns you to the last source module location you were viewing.
You can also use this command to return to your previous
location after you've issued a command that changed your
position in the current module.

Positions you at a new line number in the file. Enter the new line
number to go to. If you enter a line number after the last line in
the file, you will be positioned at the end of the file.

Searches for a character string, starting at the current cursor
position. Enter the string to search for. If the cursor is positioned
over something that looks like a variable name, the Search dialog
box will come up initialized to that name. Also, if you have
marked a block in the file using the Ins key, that block will be used
to initialize the Search dialog box. This saves you from typing if
what you want to search for is a string that is already in the file
you are viewing.

You can search using simple wildcards, with ? indicating a match
on any single character, and * matching zero or more characters.
The search does not wrap around from the end of the file to the
beginning. To search the entire file, go to the first line by pressing
Ctrl-PgUp.

Searches for the next instance of the character string you specified
with the Search command; you can only use this command after
initially choosing Search.

Turbo Debugger for Windows User’s Guide

Sometimes, Search matches an unexpected string before reaching
the one you really wanted to find. Next lets you repeat the search
without having to reenter what you want to search for.

Origin Positions you at the module and line number that is the current
program location (CS:IP). If the module you are currently viewing
is not the module that contains the current program location, the
Module window will be switched to show that module. This com-
mand is useful after you have looked around in your code and
want to return to where your program is currently stopped.

Goto Positions you at any location within your program. Enter the
address you want to examine; you can enter a procedure name or
a hex address. See Chapter 9 for a complete description of the
ways to enter an address.

If the address doesn’t have a - You can also invoke this command by simply starting to type the
coresponding source ine, a - Japel to go to. This brings up a dialog box exactly as if you had
CPU window is opened. . .
chosen the Goto command. Entering the label name is a handy
way to invoke this frequently used command.

Examining other disk files

You can examine any file on your system by using a File window.
You can view the file either as ASCII text or as hex data bytes,
using the Display As command described in a later section of this
chapter.

The File window

You create a File window by choosing View | File from the menu
bar. You can use DOS-style wildcards to get a list of file choices, or
you can type a specific file name to load.

Chapter 8, Examining files 131

Figure 8.2
The File window

Figure 8.3

The File window showing hex

data

The File window

132

local menu

Goto

=[®]=File TDDEMOW.PAS le=———=—=x-——u3=[%][i]x
nnnnnnnnnnnnnnnnnnnnnnn A
* File: TDDEMOW.PAS g

* Turbo Pascal Demonstration program for use
* Copyright (c) 1988, 1991 - Borland Internat:
v
* Reads words from standard input, analyzes 1%
L b S R

File windows show the contents of the file you've selected. The
name of the file you are viewing is displayed at the top of the
window, along with the line number the cursor is on if the file is
displayed as ASCII text.

When you first create a File window, the file appears either as
ASCII text or as hexadecimal bytes, depending on whether the file
contains what TDW thinks is ASCII text or binary data. You can
switch between ASCII and hex display at any time using the
Display As local menu command described later.

[#]=File TDDEMOW.PAS=—————=x=xo-3=[t][V]q
00000: 7b 2a 2a 2a 2a 2a 2a 2a {¥*¥%kxk A
00008: 2a 2a 2a 2a 2a 2a 2a 2@ ‘rkkkkkkk .
00010: 2a 2a 2a 2a 2a 2@ 2a 2a ‘*k¥kwkkk

: 23 22 23 2a 2a 2a 23 23 wxkEEkkkkx
: 22 2a 2a 23 2a 2@ 23 2a Hwwwkkkx
1 2a 2a 2a 2a 2a 23 2a 2@ *wwkxkkk

The File window local menu has a number of commands for
moving around in a disk file, changing the way the contents of the
file are displayed, and making changes to the file.

Lnatn
ultl...

Search...
Next

Display as Ascii
File...

Use the Alt-F10 key combination to pop up the File window local
menu or, if you have control-key shortcuts enabled, use the Ctr/
key with the highlighted letter of the desired command to access
the command without invoking the local menu.

Positions you at a new line number or offset in the file. If you are
viewing the file as ASCII text, enter the new line number to go to.
If you are viewing the file as hexadecimal bytes, enter the offset

from the start of the file at which to start displaying. You can use

Turbo Debugger for Windows User’s Guide

Search

See page 142 for complete
information about byte lists.

Next

Chapter 8, Examining files

the full expression parser for entering the offset. If you enter a line
number after the last line in the file or an offset beyond the end of
the file, TDW positions you at the end of the file.

Searches for a character string, starting at the current cursor
position. You are prompted to enter the string to search for. If the
cursor is positioned on something that looks like a symbol name,
the Search dialog box comes up initialized to that name. Also, if
you have marked a block in the file using the Ins key, that block
will be used to initialize the Search dialog box. This saves you
from typing if what you want to search for is a string that is
already in the file you are viewing. The format of the search string
depends on whether the file is displayed in ASCII or hex.

If the file is displayed in ASCII, you can use simple DOS
wildcards, with ? indicating a match on any single character, and *
matching 0 or more characters.

If the file is displayed in hexadecimal bytes, enter a byte list
consisting of a series of byte values or quoted character strings,
using the syntax of whatever language you are using for
expressions.

For example, if the language is C++, a byte list consisting of the
hex numbers 0408 would be entered as follows:
0x0804

If the language is Pascal, the same byte list is entered as
$0804

The search does not wrap around from the end of the file to the
beginning. To search the entire file, go to the first line of the file by
pressing Ctrl-PgUp.

You can also invoke this command by simply starting to type the
string that you want to search for. This brings up a dialog box
exactly as if you had specified the Search command.

Searches for the next instance of the character string you specified
with the Search command; you can only use this command after
initially choosing Search.

Next is useful when your Search command didn’t find the
instance of the string you wanted; you can keep issuing this
command until you find what you want.

133

Display As Toggles between displaying the file as ASCII text or as
hexadecimal bytes.

m If you choose ASCII display, the file appears as you are used to
seeing it on the screen in an editor or word processor.

m If you choose Hex display, each line starts with the hex offset
from the beginning of the file for the bytes on the line. Eight
bytes of data are displayed on a line. To the right of the hex
display of the bytes, the display character for each byte appears.
The full display character set can be displayed, so byte values
less than 32 or greater than 127 appear as the corresponding
display symbol.

File Lets you switch to a different file. You can use DOS wildcards to
get a list of file choices, or you can type a specific file name to
load: File lets you view a different file without putting a new File
window onscreen. If you want to view two different files or two
parts of the same file simultaneously, choose View | Another | File
to make another File window.

134 Turbo Debugger for Windows User's Guide

Each language evaluates an
expression differently.

Chapter 9, Expressions

Expressions

Expressions can be a mixture of symbols from your program (that
is, variables and names of routines), and constants and operators
from one of the supported languages: C, Pascal, or assembler.

TDW can evaluate expressions and tell you their values. You can
also use expressions to indicate data items in memory whose
value you want to know. You can supply an expression in any
dialog box that asks for a value or an address in memory.

Use Data | Evaluate/Modify to open the Evaluate/Modify dialog
box, which tells you the value of an expression. (You can also use
this dialog box or the Watches window as a simple calculator.)

In this chapter, you'll learn how TDW chooses which language to
use for evaluating an expression and how you can make it use a
specific language. We describe the components of expressions that
are common to all the languages, such as source line numbers and
access to the processor registers. We then describe the compo-
nents that can make up an expression in each language, including
constants, program variables, strings, and operators. For each
language, we also list the operators that TDW supports and the
syntax of expressions.

For a complete discussion of Pascal and assembler expressions,
refer to your Turbo Pascal for Windows Language Guide.

135

Choosing the language for expression evaluation

TDW normally determines which expression evaluator and
language to use from the language of the current module. This is
the module in which your program is stopped. You can override
this by using the Options | Language command to open the
Expression Language dialog box; in it you can set radio buttons to
Source, Pascal, C, or Assembler. If you choose Source, expressions
are evaluated in the manner of the module’s language. (If TDW
can’t determine the module’s language, it uses the expression
rules for inline assembler.)

Usually, you let TDW choose which language to use. Sometimes,
however, you'll find it useful to set the language explicitly; for
example, when you are debugging an assembler module that is
called from one of the other languages. By explicitly setting
expression evaluation to use a particular language, you can access
your data in the way you refer to it with that language, even
though your current module uses a different language.

Sometimes it’s convenient to treat expressions or variables as if
they had been written in a different language; for example, if
you're debugging a Pascal program, assembly language conven-
tions might offer an easier way to change the value of a byte
stored in a string.

If your initial choice of language is correct when you enter TDW,
you should have no difficulty using other language conventions.
TDW still retains information about the original source language
and handles the conversions and data storage appropriately. If the
language seems ambiguous, TDW defaults to assembly language.

Even if you deliberately choose the wrong language when you
enter TDW, it will still be able to get some information about the
original source language from the symbol table and the original
source file. Under some circumstances, however, it may be
possible to cause TDW to store data incorrectly.

Code addresses, data addresses, and line numbers

136

Normally, when you want to access a variable or the name of a
routine in your program, you simply type its name. However, you
can also type an expression that evaluates to a memory pointer, or

Turbo Debugger for Windows User’s Guide

specify code addresses as source line numbers by preceding the
line number with a number sign (#), like #123 (C, C++, and
Assembler only). The next section describes how to access
symbols outside the current scope.

Of course, you can also specify a regular segment:offset address,
using the hexadecimal syntax for the source code language of
your program:

Language Format Example

Pascal $nnnn $1234:$0010

Assembler nnnnh 1234h:0010h
1234h:0B234h

In assembler, hex numbers starting with A to F must be
prefixed with a zero.

Accessing symbols outside the current scope

Chapter 9, Expressions

Where the debugger looks for a symbol is known as the scope of
that symbol. Accessing symbols outside of the current scope is an
advanced concept that you don’t really need to understand in
order to use TDW in most situations.

Normally, TDW looks for a symbol in an expression the same way
a compiler would. For example, Pascal first looks in the current
procedure or function, then in an “outer” subprogram (if the
active scope is nested inside another), then in the implementation
section of the current unit (if the current scope resides in a unit),

and then for a global symbol.

For example, in the Watches window, you could enter different
line numbers for the variable nlines so you could see how its value
changes in different routines in the current module. To watch the
variable both on line 51 and on line 72, you would make the
following entries in the Watches window:

#51#nlines
#72#nlines

Here are some examples of valid symbol expressions with scope
overrides. There is one example for each of the legal combinations
of elements that you can use to override a scope.

137

The first six examples show various ways of using line numbers
to generate addresses and override scopes:

$#123
Line 123 in the current module

$#123#myvarl
Symbol myvarl accessible from line 123 of the current
module

#mymodule$123
Line 123 in module mymodule

#mymodule#123#myvarl
Symbol myvar]l accessible from line 123 in module mymodule

#mymodule#filel.cpp#123
Line 123 in source file filel.cpp, which is part of module
mymodule

#mymodule#filel.cpp#123#myvarl
Symbol myvarl accessible from line 123 in source file
filel.cpp, which is part of mymodule

The next six examples show various ways of overriding the scope
of a variable by using a module, file, or function name:

#myvar2
Same as myvar2 without the #

myfunc#myvar2
Variable myvar2 accessible from routine myfunc

$mymodule#myvar?2
Variable myvar2 accessible from module mymodule

#mymodule#myfuncimyvar?2
Variable myvar2 accessible from routine myfunc in module
mymodule

#mymodule#file2.c#myvar2
Variable myvar2 accessible from file2.c, which is included in
mymodule

fmymodule#file2.cmyfunc
myfunc defined in file file2.c, which is included in mymodule

The following four examples show how to use scope override
syntax with C++ classes, objects, member functions, and data
members:

138 Turbo Debugger for Windows User’s Guide

AnObject #AMemberVar
Data member AMemberVar accessible in object AnObject
accessible in the current scope

AnObject #AMemberF
Member function AMemberF accessible in object AnObject
accessible in the current scope

#AModule#AnObject $AMemberVar
Data member AMemberVar accessible in object AnObject
accessible in module AModule

#AModule#AnObject #AClass: : AMemberVar
Data member AMemberVar of class AClass accessible in
object AnObject accessible in module AModule

Scope override tips

The following tips might help you when overriding scope in C,
C++, and Turbo Assembler programs:

1. If you use a file name in a scope override statement, it must be
preceded by a module name.

2. If a file name has an extension, such as .ASM, .C, or .CPP, you
must specify the extension; Turbo Debugger doesn'’t try to
determine the extension itself.

3. If a function name is the first item in a scope override state-
ment, it must not have a # in front of it. If there’s a #, Turbo
Debugger interprets the function name as a module name.

4. Any variable you access through scope override syntax must
have been initialized already. An automatic variable doesn’t
have to be in scope, but its function must have run already.

5. If you're trying to access an automatic variable that’s no longer
in scope, you must use its function name as part of the scope
override statement.

m The scope of a template depends on the current location in
the program. Watches and Inspector windows on template
expressions are dependent on the current object the
program is in.

® A nested class is in the scope of the class it’s nested in. The
scope of a nested class isn’t global to the program.

Chapter 9, Expressions 139

Overriding scope in Use a period (.) to separate the components of the scope.

Pascal programs The following syntax describes scope overriding; brackets ([])

indicate optional items:
[unit.] [procedurename.]variablename

or

lunit.][[objecttype.] | [objectinstance.]] [method.] fieldname
If you don’t specify a unit, the current unit is assumed.

Here are some examples of valid symbol expressions with scope
overrides. There is one example for each of the legal combinations
of elements that you can use to override a scope.

These examples show various ways of overriding the scope of a
variable by using a module or procedure name:

MyVar2
Variable MyVar2 in the current scope

MyProc.MyVar2
Variable MyVar2 accessible from routine MyProc

MyUnit .MyVar2
Variable MyVar2 accessible from unit MyUnit

MyUnit .MyProc.MyVar2
Variable MyVar2 accessible from routine MyProc in unit
MyUnit

The following examples show how to use scope override syntax
with object types, object instances, fields, and methods:

AnInstance
Instance Anlnstance accessible in the current scope.

AnInstance.AField
Field AField accessible in instance Anlnstance accessible in
the current scope

AnObjectType.AMethod
Method AMethod accessible in object type AnObjectType
accessible in the current scope

AnlInstance.AMethod
Method AMethod accessible in instance Anlnstance accessible
in the current scope

140 ‘ Turbo Debugger for Windows User’s Guide

Scope and DLLs
Your .EXE and .DLL files must

all be in the same directory.

Chapter 9, Expressions

>

AUnit.AnInstance.AField
Field AField accessible/in instance Anlnstance accessible in
unit AUnit

AUnit.AnObjectType.AMethod
Method AMethod accessible in object type AnObjectType
accessible in unit AUnit

AUnit.AnInstance.AMethod.ANestedProc.AVar
Local variable AVar accessible in nested procedure
ANestedProc accessible in method AMethod accessible in
instance Anlnstance accessible in unit AUnit

Scope override tips

The following tips might help you when overriding scope in
Pascal programs:

1. Any variable you access through scope override syntax must
have been initialized already. The procedure or function
containing a local variable doesn’t have to be in scope, but it
must have run already.

2. If you are trying to access a local variable that’s no longer in
scope, you must use its procedure or function name as part of
the scope override statement.

3. You can’t use a line number or a file name as part of a Pascal
scope override statement. However, you can use Options |
Language to change the language to C so you can use line
number syntax.

Because TDW simultaneously loads the symbol tables of the
current module of your .EXE file and of any DLLs it accesses that
have source code and symbol tables, you might not have
immediate access to variables in your DLLs from your .EXE
module (or to the variables in your .EXE if you're currently in a
DLL).

TDW looks for a variable first in the symbol table of the current
module or DLL, and then in any other symbol tables in order of
loading. If a variable has the same name in multiple DLLs or in
your .EXE and one or more DLLs, TDW sees only the first
instance it finds. You can’t use scope override syntax to access any
such variables; instead, you must press F3 and use the Load
Modules and DLLs dialog box to load the appropriate module or
DLL.

141

Implied scope for
expression
evaluation

Byte lists

TDW loads symbol tables for the following items:

1. the current module of your .EXE file

2. any DLL you explicitly load using the Symbol Load command
in the Load Modules and DLLs dialog box (displayed with F3
or View | Module)

3. any DLL you step into from your program

Whenever TDW evaluates an expression, it must decide where
the current scope is for any symbol names without an explicit
scope override. Determining scope is important because in many
languages you can have symbols inside functions or procedures
with the same name as global symbols, and TDW must know
which instance of a symbol you mean.

TDW usually uses the current cursor position as the context for
determining the scope. Thus, you can set the scope where an
expression will be evaluated by moving the cursor to a specific
line in a Module window.

One result is that if you've moved the cursor off the current line
where your program is stopped, you might get unexpected results
from evaluating expressions. If you want to be sure that expres-
sions are evaluated in your program’s current scope, use the
Origin local menu command in the Module window to return to
the current location in the source code. You can also set the
expression scope by moving around inside the Code pane of a
CPU window, by moving the cursor to a routine in the Stack
window, or by moving the cursor to a routine name in a Variables
window.

142

Several commands ask you to enter a list of bytes, including the
Search and Change local menu commands in the Data pane of the
CPU window, and the Search local menu command of the File
window when it’s displaying a file in hexadecimal format.

A byte list can be any mixture of scalar (non-floating-point) num-
bers and strings in the syntax of the current language, determined
by the Options | Language command. Both strings and scalars use

Turbo Debugger for Windows User’s Guide

the same syntax as expressions. Scalars are converted into a
corresponding byte sequence. For example, a Longint value of
123456 becomes a 4-byte hex quantity 40 E2 01 00.

Language Byte list Hex data

Pascal ‘ab’$04’ ¢’ 616204 63
Assembler 1234 “AB” 34124142
C “ab” 0x04 “c” 61 6204 63

Pascal expressions

Symbols

Constants and
number formats

Chapter 9, Expressions

TDW supports the Pascal expression syntax, with the exception of
string concatenation and set operators. A Pascal expression con-
sists of a mixture of symbols, operators, strings, variables, and
constants. The following sections describe each of the components
that make up an expression.

Symbols in Pascal are user-defined names for data items or rou-
tines in your program. A Pascal symbol name can start with a
letter (a-z, A-Z) or an underscore (_). Subsequent characters in the
name can contain the digits (0 to 9) and the underscore, as well as
letters.

Normally, a symbol obeys the Pascal scoping rules, with “nested”
local symbols overriding other symbols of the same name. You
can override this scoping if you want to access symbols in other
scopes. For more details, see the section “Accessing symbols
outside the current scope” on page 137.

Constants can be either real (floating-point) or integer constants.
Negative constants start with a minus sign (-). If the number
contains a decimal point or an ¢ that introduces an exponent, it is
a real number. For example,

123.4 456e34 123.45e-5

Integer-type constants are normally decimal, unless they start
with a dollar sign ($) to indicate hexadecimal. Decimal integer
constants must be between -2,137,483,648 and 2,147,483,647.

143

Strings

Operators and
operator
precedence

Calling functions
and procedures

Hexadecimal constants must be between $00000000 and
$FFFFFFFF.

A string is simply a group of characters surrounded by single
quotes. For example,

"abc’

You can embed control characters in a string by preceding the
decimal control character value with a #. For example,

"def’ #7'xyz'

TDW supports all the Pascal expression operators.

The unary operators are of the highest precedence and are of
qual priority.

[4]

@ Takes address of an identifier
A Contents of pointer

not Bitwise complement

typeid Typecast

+ Unary plus, positive

- Unary minus, negative

The binary operators are of a lower precedence than the unary
operators. They are listed here in descending order (operators on
the same line have the same priority):

* / div mod and shl shr
in + - or Xxor
< <= > >= = <>

The assignment operator (:=) has the lowest precedence; it returns
a value.

You can refer to Pascal functions and procedures in expressions.
For example, assume you have declared a function called
HalfFunc that divides an integer by 2:

function HalfFunc(i:Integer): Real;

Turbo Debugger for Windows User's Guide

You can then choose Data | Evaluate/Modify and call HalfFunc as
follows:

HalfFunc(3)
HalfFunc(10) = HalfFunc (10 div 2)

You can also call procedures, although not in an expression, of
course. When you enter a procedure or function name by itself,
TDW reports its address and declaration. To call a function or
procedure that has no parameter, place a set of empty parentheses
after the symbol name. For example,

MyProc() Calls MyProc
MyProc Reports MyProc’s address, and so on
MyFunc = 5 Compares address of MyFunc to 5

MyFunc() = 5 Calls MyFunc and compares returned value to 5

Assembler expressions

Assembler
symbols

Assembler
constants

Chapter 9, Expressions

TDW supports the complete assembler expression syntax. An
assembler expression consists of a mixture of symbols, operators,
strings, variables, and constants. Each of these components is
described in this section.

Symbols are user-defined names for data items and routines in
your program. An assembler symbol name starts with a letter (a-z,
A-Z) or one of these symbols: @ ? _ $. Subsequent characters in
the symbol can contain the digits 0 to 9, as well as these char-
acters. The period (.) can also be used as the first character of a
symbol name, but not within the name.

The special symbol § refers to your current program location as
indicated by the CS:IP register pair.

Constants can be either floating point or integer. A floating-point
constant contains a decimal point and may use decimal or scien-
tific notation. For example,

1.234 4.5e+11

Integer constants are hexadecimal unless you use one of the
assembler conventions for overriding the radix:

145

If you want fo end a hex
number with a D or B, you
must append an H to avoid
ambiguity.

Assembler
operators

Format control

Format Radix

digitsH Hexadecimal
digitsO Octal

digitsQ Octal

digitsD Decimal
digitsB Binary

You must always start a hexadecimal number with one of the
digits 0 to 9. If you want to enter a number that starts with one of
the letters A to F, you must first precede it with a 0 (zero).

TDW supports most of the assembler operators. The first line in
the list that follows shows the operators with the lowest priority,
and the last line those operators with the highest priority. Within
a line, all the operators have the same priority.

xxx PTR (BYTE PTR...)
. (structure member selector)
: (segment override)
OR XOR

AND

NOT

EQ NE LT LE GT GE
+ —

* / MOD SHR SHL
Unary + Unary -
OFFSET SEG

O [l

Variables can be changed using the = assignment operator. For
example,

a = [BYTE PTR DS:4]

146

When you supply an expression to be displayed, TDW displays it
in a format based on the type of data it is. TDW ignores a format
control that is wrong for a particular data type.

Turbo Debugger for Windows User’s Guide

Chapter 9, Expressions

If you want to change the default display format for an expres-
sion, place a comma at the end of the expression and supply an
optional repeat count followed by an optional format letter. You
can only supply a repeat count for pointers or arrays.

Character

Format

C

f[#]

md

xorh

Displays a character or string expression as raw
characters. Normally, nonprinting character values are
displayed as some type of escape or numeric format.
This option forces the characters to be displayed using
the full IBM display character set.

Displays an integer as a decimal number.

Displays as floating-point format with the specified
number of digits. If you don’t supply a number of
digits, as many as necessary are used.

Displays a memory-referencing expression as hex
bytes.

Displays a memory-referencing expression as decimal
bytes.

Displays a raw pointer value, showing segment as a
register name if applicable. Also shows the object
pointed to. This is the default if no format control is
specified.

Displays an array or a pointer to an array of characters
as a quoted character string.

Displays an integer as a hexadecimal number.

147

148 Turbo Debugger for Windows User’s Guide

10

Object-oriented debugging

To meet the needs of the object-oriented programming revolution,
TDW supports object-oriented Pascal. Besides extensions that let
you trace into object methods and examine objects in the
Evaluate/Modify dialog box and the Watches window, TDW
comes equipped with a special set of windows and local menus
specifically designed for objects and object types.

The Hierarchy window

TDW provides a special window for examining object type
hierarchies. You can bring up the Hierarchy window by choosing
View | Hierarchy.

3=[1][{]

[»]=Class Hierarch
L———Point
L

Figure 10.1
The Hierarchy window

Point
Range

Rectangle
Screen

Chapter 10, Object-oriented debugging 149

Use Tab to move between

the two panes.

The Object Type

150

List pane

The Object Type List
pane local menu

Inspect
Tree

The Hierarchy window displays information on object types rather
than instances. The left pane, the Object Type List pane, lists in
alphabetical order the types used by the module being debugged.
The right pane, the Hierarchy Tree pane, shows all object types in
their hierarchies by using a line graphic that places the base type
at the left margin of the pane and displays descendants beneath
and to the right of the base type, with lines indicating descendant
relationships.

The left pane of the Hierarchy window provides an alphabetical
list of all object types used by the current module. It supports an
incremental matching feature to eliminate the need to scroll
through large lists of types: When the highlight bar is in the left
pane, simply start typing the name of the object type you're
looking for. At each key press, TDW highlights the first type
matching all keys pressed up to that point.

Press Enter to open an object type Inspector window for the high-
lighted type. Object type Inspector windows are described on
page 151.

Press Alt-F10 to display the local menu for the pane. You can use
the control-key shortcuts if you’ve enabled hot keys with
TDWINST (described in the online text file UTILS.TDW). This
local menu contains two items: Inspect and Tree.

Inspect

Displays an object type Inspector window for the highlighted
type.

Tree

Moves to the right pane in which the hierarchy tree is displayed
and places the highlight bar on the type that was highlighted in
the left pane.

Turbo Debugger for Windows User's Guide

The Hierarchy

Tree pane The right pane displays the hierarchy tree for all object types used
by the current module. Ancestor and descendant relationships are
indicated by lines, with descendants to the right of and below
their ancestors.

To locate a single object type in a complex hierarchy tree, go back
to the left pane and use the incremental search feature; then
choose the Tree command from the local menu to move back into
the hierarchy tree. The matched type appears under the highlight
bar.

When you press Enter, an object type Inspector window appears
for the highlighted type.

The Hierarchy Tree The Hierarchy Tree pane local menu (Alf-F10in that pane) has only
pane local menu one item: Inspect. When you choose it, an object type Inspector
window appears for the highlighted type. However, a faster and
Inspect easier method is simply to press Enter when you want to inspect
the highlighted type.

Object type Inspector windows

TDW provides a special type of Inspector window to let you
inspect the details of an object type: the object type Inspector win-
dow. The window summarizes type information, but does not
reference any particular instance. You display this window by
bringing up the Object Hierarchy window (choose View |
Hierarchy), selecting an object type, and pressing Ctrl-l.

Figure 102 [=[al=—=LINEARGAUGE=4=[1] [V}

An object type Inspector
window

FUNCTION RANGE.GETVALUE : INTEG
FUNCTION RANGE.GETLOW : INTEGER
FUNCTION RANGE.GETHIGH : INTEGE

The window is divided horizontally into two panes, with the top
pane listing the data fields of the type and the bottom pane listing
the method names and (if the selected item is a function rather

Chapter 10, Object-oriented debugging 151

The object type
Inspector window

local menus

The Object Data Field

162

(top) pane

than a procedure) the function return type. Use Tab to move
between the two panes of the object type Inspector window.

If the highlighted data field is an object type or a pointer to an
object type, pressing Enter opens another object type Inspector
window for the highlighted type. (This action is identical to
choosing Inspect in the local menu for this pane.) In this way,
complex nested structures of objects can be inspected quickly with
a minimum of keystrokes.

For brevity’s sake, method parameters are not shown in the object
type Inspector window. To examine parameters, highlight the
method and press Enter. A method Inspector window appears.
The top pane of the window displays the code address for the
object’s implementation of the selected method, and the names
and types of all its parameters. The bottom pane of the window
indicates whether the method is a procedure or a function.

Pressing Enter from anywhere within the method Inspector win-

dow brings the Module window or the CPU window to the fore-
ground, with the cursor at the code that implements the method
being inspected.

As with standard inspectors, Esc closes the current Inspector
window and Alt-F3 closes them all.

Pressing Alt-F10 brings up the local menu for either pane. If
control-key shortcuts are enabled (through TDWINST), you can
get to a local menu item by pressing Ctr/ and the first letter of the
item.

Inspect
Hierarchy
Show inherited Yes

The Object Data Field pane local menu contains these items:

Inspect

If the highlighted field is an object type or a pointer to one, a new
object type Inspector window is opened for the highlighted field.

Turbo Debugger for Windows User's Guide

Hierarchy

Opens a Hierarchy window for the object type being inspected.
The Hierarchy window is described on page 149.

Show Inherited

Yes is the default value of this toggle. When Show Inherited is set
to Yes, TDW shows all data fields, whether they are defined
within the type of the inspected object or inherited from an
ancestor type. When it is set to No, TDW displays only those fields
defined within the type being inspected.

The Object Method The local menu commands for the bottom Object Method pane
(bottom) pane are Inspect, Hierarchy, and Show Inherited.

Inspect

A method Inspector window is opened for the highlighted item. If
you press Ctrl-l when the cursor is positioned over the address
shown in the method Inspector window, the Module window is
brought to the foreground with the cursor at the code that
implements what is being inspected.

Hierarchy

Opens a Hierarchy window for the object type being inspected.
The Hierarchy window is described on page 149.

Show Inherited

Yes is the default value of this toggle. When it is set to Yes, all
methods are shown, whether they are defined within the type
being inspected or inherited from an ancestor. When it is set to No,
only those methods are displayed that are defined within the
object type being inspected.

Object instance Inspector windows

Object type Inspector windows provide information about object
types, but say nothing about the data contained in a particular

Chapter 10, Object-oriented debugging 153

Figure 10.3
An object instance Inspector
window

See the Turbo Pascal for
Windows manuals for a
description of the Virtual

Method Table (VMT).
The object
instance
Inspector window
local menus
Range...
Change...
Methods Yes
Show inherited Yes
Inspect
Descend
New expression...
Type cast
Hierarchy

154

object instance at a particular time during program execution.
TDW provides an extended form of the familiar record Inspector
window specifically to inspect object instances.

Bring up this window by placing your cursor on an object
instance in the Module window, then pressing Ctrl-.

[w]=Inspecting Balls=3=[*][{]=
LOCATION.X 40 ($28) &

LOCATION.Y 24 ($18)
LOCATION.VISIBLE

INTEGER l‘

Most TDW data record Inspector windows have two panes: a top
pane summarizing the record’s field names and their current
values, and a bottom pane displaying the type of the field
highlighted in the top pane. An object instance Inspector window
provides both of those panes, and also a third pane between them.
This third pane summarizes the instance’s methods, with the code
address of each. (The code address takes into account poly-
morphic objects and the Virtual Method Table.)

Each of the top two panes of the object instance Inspector window
has its own local menu, displayed by pressing Alt-F10in that pane.
Use the control-key shortcuts to get to individual menu items if
you've enabled hot keys with TDWINST.

As with record Inspector windows, the bottom pane serves only
to display the type of the highlighted field and doesn’t have a
local menu.

The local menu commands for the top pane, which summarizes
the data fields for the selected item, are described here.

Turbo Debugger for Windows User’s Guide

Range This command displays the range of array items. If the inspected
item is not an array or a pointer, the item cannot be accessed.

Change By choosing this command, you can load a new value into the
highlighted data field.

Methods This command is a Yes/No toggle, with Yes as the default condi-
tion. When it’s set to Yes, methods are summarized in the middle
pane. When it’s set to No, the middle pane doesn’t appear. This
setting is carried over to the next Inspector window to be opened.

Show Inherited This command is also a Yes/No toggle. When it’s set to Yes, all
fields and all methods are shown, whether they are defined
within the type being inspected or inherited from an ancestor
type. When it’s set to No, only those fields and methods defined
within the type being inspected are displayed.

Inspect Choosing this command opens an Inspector window on the
highlighted field. Pressing Enter over a highlighted field does the
same thing.

Descend The highlighted item takes the place of the item in the current
Inspector window. No new Inspector window is opened.
However, you can’t return to the previously inspected field, as
you could if you had used the Inspect option.

;> Use Descend to inspect a complex data structure when you don'’t
want to open a separate Inspector window for each item.

New Expression This command prompts you for a new field or expression to
' inspect. The new item replaces the current one in the window; it
doesn’t open another window.

Chapter 10, Object-oriented debugging 155

156

Type Cast

Hierarchy

The middle and
bottom panes

Lets you specify a different data type for the item being inspected.
This command is useful if the Inspector window contains a
symbol for which there is no type information, as well as for
explicitly setting the type for pointers.

When you choose this command, a Hierarchy window opens. For
a full description of this window, see page 149.

The middle pane summarizes the methods of an object. The only
difference between the Object Method pane’s local menu and the
local menu for the top pane is the absence of the Change
command. Unlike data fields, methods cannot be changed during
execution, so there is no need for this command. The bottom pane
displays the type of the item highlighted in the upper two win-
dows.

Turbo Debugger for Windows User's Guide

11

Using Windows debugging feafures

This chapter covers the features of TDW that give you access to
Windows information and let you do the following:

m Log messages received and sent by your application’s windows
a List the global heap

m List the local heap

m View the complete list of modules (including dynamic link
libraries) loaded by Windows

m Debug dynamic link libraries (DLLs)

m See the contents of any protected-mode selector (in the CPU
window)

Windows features

The features that support debugging of Windows programs are

m A view window, the Windows Messages window, which shows
messages passed to windows in your program

m Three types of data you can display in the Log window:

o The data segments in your program’s local heap
¢ The data segments in the global heap

e A complete list of modules making up your program,
including any dynamic link libraries (DLLs)

Chapter 11, Using Windows debugging features 167

m Expression typecasting from memory handles to far pointers

m Support for debugging of DLLs in the Load Module Source or
DLL Symbols window (choose View | Modules)

m The Selector pane of the CPU window, which allows you to see
the contents of any protected-mode selector.

Logging window
messages To track messages being passed to your program’s windows,
choose the View | Windows Messages command to open the
Windows Messages window. This window shows you the
messages that Windows is passing to one or more windows in
your program.

The Windows Messages window is composed of three panes, the
Window Selection pane (top left), the Message Class pane (top
right), and the Messages pane (bottom). The messages show up in
the Messages pane.

The appearance of this window and the way you add application
windows to it differ depending on whether you're working with
an ObjectWindows application or a standard Windows
application.

Selecting a window for If you're debugging a standard Windows application and you
a standard Windows select View | Windows Messages, you see the following window:
application
Figure 11.1
The Windows Messages

window for a standard
Windows application

[w]==Windows messag 3=[1][{]

Windowiroc wndiroc Break on message WM PAINT

<8

Hwnd:2214 wParam:0000 1|Param:00000000 (000f) WM PAINT

add... Before you can log messages, you must first indicate which

Remove window you're logging messages for. You do this in the top left

Delete all pane, the Window Selection pane. This pane’s local menu
(activated by pressing Alt-F10) lets you add a window selection,
delete a window selection, or delete all window selections.

158 Turbo Debugger for Windows User’s Guide

Adding a window selection for a standard Windows
application

To add a window selection, you can either choose Add from the
Window Selection pane local menu or begin typing in the pane.
Either method brings up the Add Window dialog box.

Figure 11.2 [#]=Add window or handle to watch
The Add Window dialog box i i i1i
for a standard Windows 0K
application Identify by Cancel
() hanatcpiee e)

Adding the first window proc You can enter either the name of the object that processes
fo this box also sets the messages for the window (select the Window Proc button) or a
message class to “Log all .
messages.” handle value (select the Handle button). Enter as many routine
names or handle values as necessary to track messages for your

windows.

It’s easier to indicate the window by the name of the routine that
processes its messages (for example, WndProc) because you can
enter a routine name any time after loading your program.

If you prefer to use a handle variable name, you must first step
through the program past the line where the handle variable is
assigned a handle. (Use the F7 or F8 key to single-step through the
program.) If you try to enter the variable name before stepping
past its assignment statement, TDW will not let you.

Selecting a window fér If you're debugging an ObjectWindows application and you select
an ObjectWindows View | Windows Messages, by default you see the standard

application Windows Messages dialog box in Figure 11.1. This dialog box
works the same for ObjectWindows programs as for standard
Windows programs, except that you can’t use a Windows proce-
dure name. Instead, you must use the handle to the window
object for the window whose messages you want to log or break
on.

Obtaining a window handle

Before you can use the handle of a window object, you must run
your program past the point where the handle is initialized. You
can use a number of techniques to do this.

Chapter 11, Using Windows debugging features 159

m It’s simplest just to run your application and exit back to TDW
with Ctrl-Alt-SysRq.

m Another possibility is to set a breakpoint in a message-handling
routine in your program (such as a routine that handles
WM_MOUSEMOVE messages), run the program, and then
perform the action in the window that triggers the breakpoint
(for example, moving the mouse).

m If you're having major problems with the window itself (such
as an unrecoverable application error (UAE) that comes up
when the window is first displayed), you'll have to go to
greater lengths to obtain the window handle.

Because the handle is initialized by the ObjectWindows method
SetupWindow, you can only get the window handle after this
method has executed. The easiest way to to this is to set a
breakpoint after the call to TWindow.SetupWindow.

However, not all programs contain this call explicitly. For
example, the program TDODEMO does not contain a direct
SetupWindow call. In order to obtain the window handle, you
must override the method for the TDODEMO window object
ScribbleWindow as follows:

type

ScribbleWindow=object (TWindow)
procedure SetupWindow; virtual;
end;

Once this declaration has been made, you can create a dummy
method with a call to Setup Window:

procedure ScribbleWindow.SetupWindow;
begin

TWindow.SetupWindow;
end;

Next, position the cursor on the end statement after the call to
statement and press F4 to run the program to the point where
the handle of the window, dialog box, or control is initialized.
In this example, you’d position the cursor on the end of the
function Setup Window.

If you get the UAE before SetupWindow is called, then the
problem lies before the creation of the window.

Once the handle is initialized and you’ve returned to TDW, you
can obtain its value by choosing Data | Inspect and entering the
name of the associated window object (in TDODEMO,
MyApp".MainWindow). Look for the data member HWindow and

Turbo Debugger for Windows User’s Guide

See the file UTILS.TDW for
information on setting
options in TDWINST.

Figure 11.3

The Windows Messages
window with ObjectWindows
support enabled

Add...
Remove
Delete all

copy it into the Clipboard (press Shift-F3). You can then paste the
contents of HWindow as a handle into the Add dialog box of the
Window Messages window’s top left pane (press Shift-F4 in the
dialog box’s text entry box).

Specifying a window with ObjectWindows support enabled

If you run the TDW configuration program TDWINST, you can
turn on support in TDW for ObjectWindows window messages.
With this option on, you can use the names of windows objects as
they’re declared in your application. Choosing View | Windows
Messages with the OWL option on displays the following screen:

[#]=0WL Windows messag 3=[t1[4]
Window object 11c5:006e Log all messages

Hwnd:2214 wParam:0000 1Param

Before you can log messages, you must first indicate which
window, dialog box, or dialog control you're logging messages
for. You do this in the top left pane, the Window Selection pane.
This pane’s local menu (activated by pressing Alt-F10) lets you add
a window object, delete a window object, or delete all window
objects.

Adding a window with ObjectWindows support enabled

Before adding a window object, you must run your program past
the point where the window object is initialized. Typically, the
object is initialized in a statement like the one in the following
procedure definition from TDODEMO:

procedure CScribbleApplication.InitMainWindow;
begin
MainWindow := New (PCScribbleWindow,Init (nil, ’Scribble With
Color!’));
end;

Position the cursor on the line after the initialization statement
and press F4 to run the program to the point where the window,
dialog box, or control is initialized. In this example, you’d
position the cursor on the end keyword.

Chapter 11, Using Windows debugging features 161

Figure 11.4

The Add Window dialog box
with ObjectWindows support

Adding the first object to this
pane also sets the message
class to “Log all messages.”

enabled

Deleting a window
selection

Specifying a message

162

class and action

Add...
Remove
Delete all

Once the window object is initialized, you can add it to the
Window Selection pane. To add the object, either choose Add
from the Window Selection pane local menu or begin typing the
object’s name in the pane. Either method brings up the Add
Window dialog box.

If you're not in the routine where the object is declared, you have
to override scope to access it. For example, in TDODEMO,
MainWindow is a field of CSApp (because CSApp is of type
CScribbleApplication, which is derived from TApplication, which
has a field called MainWindow). Since CSApp is declared in the
main program, it’s available globally, so the scope override
statement is CSApp.MainWindow.

[w]=Add window or handle to watc
Window identifier
| [OK g
Idenmy by]
() Handre " vetp g

You can enter either the name of the object that processes
messages for the window, dialog box, or control (select the
Window Object button) or a handle value (select the Handle
button). Enter as many object names or handle values as
necessary to track messages for your windows.

Deleting a window selection from the Window Selection pane
works the same for both types of applications. To delete, move the
cursor to the item, then either bring up the local menu and choose
Remove or press the Delete, Ctrl-Y, or Ctri-R key.

To delete all selections, choose Delete All from the local menu.

The top right pane is the Message Class pane. Its local menu,
identical to that of the Window Selection pane, allows you to add
a message class, remove a message class, or delete all classes you
have added.

You must specify a window procedure or handle in the Window
Selection pane before you can add a message class in this pane.

If you don't indicate a specific message or class of messages to
watch, TDW watches all messages sent to the window procedure
or handle.

Turbo Debugger for Windows User’s Guide

Adding a message class

To add a message class, choose Add from the Message Class pane
local menu. TDW displays the following dialog box:

Figure 11.5
The Set Message Filter dialog
box

Clipboard
DDE
Non-client
Other

Single message

)
)
)
)
)

(
E
(
(

The Set Message Filter dialog box prompts you both for a message
class to track and an action to be performed when a message in
that class is received.

TDW by default logs all messages starting with WM_. Because so
many messages come in, you'll probably want to narrow the focus
by selecting one of the classes in the Message Class list. You can
add only one class at a time, so if you need to track messages from
multiple classes, you have to use the Add option for each class
you want to set.

The following table describes the message classes:

Table 11.1 .
Windows message classes Message class Description

All Messages All window messages

Mouse Messages generated by a mouse event (for example,
WM_LBUTTONDOWN and WM_MOUSEMOVE)

Window Messages from the window manager (for example,
WM_PAINT and WM_CREATE)

Input Messages generated by a keyboard event or by the
user’s accessing a System menu, scroll bar, or size
box (for example, WM_KEYDOWN)

System Messages generated by a system-wide change (for
example, WM_FONTCHANGE and
WM_SPOOLERSTATUS)

Initialization Messages generated when an application creates a
dialog box or a window (for example,
WM_INITDIALOG and WM_INITMENU)

Chapter 11, Using Windows debugging features 163

164

Setting a message
breakpoint

Table 11.1: Windows message classes (continued)

Clipboard Messages generated when one application tries to
access the Clipboard of a window in another appli-
cation (for example, WM_DRAWCLIPBOARD and
WM_SIZECLIPBOARD)

DDE Dynamic Data Exchange messages, generated by
applications’ communicating with one another’s
windows (for example, WM_DDE_INITIATE and
WM_DDE_ACK) -

Non-client Messages generated by Windows to maintain the
non-client area of an application window (for
example, WM_NCHITTEST and WM_NCCREATE)

Other Any messages that don’t fall into any of the other
categories, such as owner draw control messages
and multiple document interface messages

Single Message Any single message you want to log or break on

To track a single message, choose Single Message and enter the
message name or the message number as a decimal number. If
you enter a message name, be sure to use all capital letters.

The default action is to put the messages in the log. The other
action you can perform, having the program break when it
receives a message, is equivalent to setting a breakpoint for a
message.

For example, if you want to track the WM_PAINT message and
have the program stop every time this message is sent to a
window you chose in the Window Selection pane, do the
following:

1. Select the top right pane, the Message Class pane.
2. Bring up the local menu, then choose Add.

3. From the dialog box, select Break from the Action radio
buttons and Single Message from the Message Class radio
buttons.

4. Enter WM_PAINT in the Message Name input box, then press
Enter.

Figure 11.1 on page 158 shows how the Windows Messages

window looks after you have made these selections and a
message has come in.

Turbo Debugger for Windows User’s Guide

Viewing messages

Send to log window No
Erase log

Deleting a message class

To delete a message class, move the cursor to the item, then either
bring up the local menu and choose Remove or press one of the
following keys: Delete, Ctrl-R, or Ctrl-Y.

To delete all classes, choose Delete All from the local menu or
press Ctrl-D. ‘

The default class, Log all messages, appears after you have
deleted all classes. You cannot delete this class using Remove or
Delete All command.

Window message tips

If you're displaying messages for more than one window, do not
log all messages. Instead, log specific messages or a specific
message class for each window. If you log all messages, the large
number of messages being transferred between Windows and
TDW might cause your system to hang.

When setting a break on Mouse class messages, be aware that a
mouse down message must be followed by a mouse up message
before the keyboard becomes active again. This restriction means
that when you return to the application, you might have to press
the mouse button several times to get Windows to receive a mouse
up message. You'll know that Windows has received the message
when you see it in the lower pane of the Windows Messages
window.

If you enter a handle name but indicate that it’s a procedure, TDW
accepts your input and doesn’t complain. However, when you
run your program, TDW does not log any messages. If TDW isn’t
logging messages after you've set a handle, reenter the handle and
be sure to select the Handle button.

Window messages show up in the lower pane of the Windows
Messages window. This pane can hold up to 200 messages.

If you want to save the messages to a file, you have to open a log
file for the Log window (use View | Log File, then choose Open
Log File from the local menu). Then switch back to the Messages
pane and change the Send To Log Window entry on the local
menu to Yes.

Chapter 11, Using Windows debugging features 165

Obtaining
memory and
module lists

Figure 11.6
The Windows Information
dialog box

Listing the contents of

166

the global heap

If you want to clear the pane of all messages, choose Erase Log
from the local menu. Any messages written to the Log window
will not be affected by this command.

To list the contents of the global or local heap or the modules for
your Windows program, first bring up the Log window with
View | Log, then access the local menu. The last command on the
Log window local menu is Display Windows Info. Choosing that
command displays the Windows Information dialog box, from
which you can pick the type of list you want to display and where
to start the list.

-1————Hindows information:

Displa,
0K g

§~) Global heap

Local heap

Module Tist
N

Start at
AR

p
() Bottom
() Handle
Starting handle

If you select the Global Heap option, you can choose to display
the list from top to bottom, from bottom to top, or from a location
indicated by a starting handle.

A starting handle is the name of a global memory handle set in
your application by a call to a Windows memory allocation
routine like GlobalAlloc. Picking a starting handle causes TDW to
display the object at that handle as well as the next four objects
that follow it in the heap.

The global heap is the global memory area Windows makes
available to all applications. If you allocate resources like icons,
bit maps, dialog boxes, and fonts, or if you allocate memory using
the Global Alloc function, your application is using the global heap.

To see a list of the data objects in the global heap, select the Global
Heap radio button in the Windows Information dialog box, then
choose OK. The data objects will be listed in the Log window.

Because this list is likely to exceed the number of lines the Log
window can write (the default is 50 lines), you should either write
the contents to a log file (use the Log window local menu) or

Turbo Debugger for Windows User's Guide

increase the number of lines the Log window can use (use
TDWINST). The maximum number of lines you can set is 200.

The following table shows two lines of sample global heap output
followed by an explanation of each field in the sample output:

Table 11.2
Format of a global heap list

Sample global heap output

0EC5

00000040b PDB (0F1D)
053E (053D) 00002DCOb GDI

DATA MOVEABLE LOCKED=00001 PGLOCKED=0001

Field

Description

0EC5
053E

(053D)

00000040b
00002DCO0b

PDB
GDI

(OF1D)
DATA

MOVEABLE

LOCKED=00001

PGLOCKED=0001

Either a handle to the memory object, expressed
as a 4-digit hex value, or the word FREE,
indicating a free memory block.

A memory selector pointing to an entry in the
global descriptor table. The selector isn’t displayed
if it's the same value as the memory handle.

A hexadecimal number representing the length of
the segment in bytes.

The allocator of the segment, usually an
application or library module. A PDB is a process
descriptor block, also known as a program
segment prefix (PSP).

A handle indicating the owner of a PDB.
The type of memory object. The types are
DATA
CODE
PRIV

Data segment of an application or DLL
Code segment of an application or DLL

Either a system object or global data for
an application or DLL

A memory allocation attribute. An object can be
FIXED, MOVEABLE, or MOVEABLE
DISCARDABLE.

For a moveable or moveable-discardable object,
the number of locks on the object that have been
set using either the GlobalLock or LockData function.

For 386 Enhanced mode, the number of page locks
on the object that have been set using the
GlobalPageLock function. With a page lock set on a
memory object, Windows can’t swap to disk any of
the object’s 4-kilobyte pages.

Chapter 11, Using Windows debugging features

167

Listing the contents of

the local heap

Table 11.3

Format of a local heap list

168

Obtaining a list of
modules

>

The local heap is a private memory area for the application. It is
not accessible to other Windows applications, including other
instances of the same application.

A program doesn’t necessarily have a local heap. Windows
creates a local heap if the application uses the LocalAlloc function.

To see a list of the data objects in the local heap, select the Local
Heap radio button in the Windows Information dialog box, then
choose OK. The data objects will be listed in the Log window.

The list can easily exceed the default length of the log window.
See the caution in the previous global heap section (page 166)
about using a log file or increasing the number of lines that can be
written in the Log window.

The following table shows a typical line of local heap output
followed by an explanation of its format:

Local heap output

05CD: 0024 BUSY (10AF)

Field Description

05CD: The object’s offset in the local data segment

0024 The length of the object in bytes

BUSY The disposition of the memory object, as follows:

FREE An unallocated block of memory
BUSY An allocated object
(10AF) A local memory handle for the object

To see a list of the task and DLL modules that have been loaded
by Windows, select the Module List radio button in the Windows
Information dialog box, then choose OK. The modules will be
listed in the Log window.

The list can easily exceed the default length of the log window.
See the caution in the global heap section (page 166) about using a
log file or increasing the number of lines that can be written in the
Log window.

Turbo Debugger for Windows User's Guide

Table 11.4
Format of a Windows module
list

Debugging
dynamic link
libraries (DLLSs)

TDW can load a DLL that
doesn’t have a symbol table,
but only into a CPU window.

The following table shows three sample lines of a module list -
followed by an explanation of the last line in the list:

Sample module list output

0985 TASK TDW C:\TPW\TDW.EXE
0E2D DLL TDWIN C:\WINDOWS\TDWIN.DLL
0EFD TASK GENERIC C:\TPW\GENERIC.EXE

Field Description

OEFD A handle for the memory segment, expressed
as a 4-digit hex value.

TASK The module type. A module can be either a
task or a DLL.

GENERIC The module name.

CATPW\GENERIC.EXE The path to the module’s executable file.

A DLL is a library of routines and resources that is linked to your
Windows application at run time instead of at compile time. This
run-time linking allows multiple applications to share a single
copy of routines, data, or device drivers, thus saving on memory
use. When an application that uses a DLL starts up, if the DLL is
not already loaded into memory, Windows loads it in so the
application can access the DLL’s entry points.

When you load an application into TDW that has DLLs linked
into it, TDW determines which of these DLLs, if any, have symbol
tables (were compiled with the debugging option turned on) and
tracks these DLLs for you. If, during execution of your appli-
cation, TDW encounters a call to an entry point for one of these
DLLs, TDW loads the symbol table and source for that DLL and
positions the module line marker at the beginning of the DLL
routine called by your application. The DLL is then available in
the Module window just as your application source code was.

When the DLL routine exits, if possible, TDW reloads your
application’s source code and positions the line marker on the
next statement after the call to the DLL entry point.

If you are tracing through the program using F7 or F8, it might not
be possible for TDW to return you to the calling routine in your
program because the DLL might return through a Windows
function call. In this case, your program just runs as though you
had pressed F9. This behavior is common in DLL startup code. To

Chapter 11, Using Windows debugging features 169

Figure 11.7
The Load Modules or DLLs
dialog box

Using the Load
Modules or DLLs dialog
box

170

force a return to your application, before tracing in your
application to the DLL call, set a breakpoint in your application
on the line after the call to the DLL. When debugging DLL startup
code, set the breakpoint on the first line of your application.

Because so much of DLL debugging is automatic with TDW, you
never have to specify which DLLs to load. However, you might
want to perform other tasks, such as:

m Adding a DLL to the list of DLLs
m Setting breakpoints, watches, and so on, in a DLL

m Specifying which DLLs TDW is not supposed to load symbols
for

m Debugging DLL startup code

To perform any of these tasks, you have to access the Load
Modules or DLLs dialog box by using the View | Modules
command. (Pressing F3 will also bring up this dialog box.)

[#]=—=====Load module source or DLL symbols:

ource modules
SCRNFUNC.DLLe
DEMO.EXEe
WINDEBUG.DLL
WREMOTE . EXE
NWPOPUP . EXE
PROGMAN. EXE
USER.EXE
GDI.EXE
KRNL386. EXE

Load symbols

o
(¢) Yes

Debug startup
*) No
() Yes

DLL nBme

This dialog box enables you to do two things:

m Change to another source module of your application

m Perform operations on DLLs and .EXE files (such as loading in a
symbol file and source file)

Changing source modules

If you're debugging an application consisting of multiple source
modules linked into one .EXE file and you need access to a
module of the application other than the one currently in the
Module window, you can bring up the Load Modules or DLLs
dialog box and pick one of the modules in the list on the left, the
Source Modules list. '

Turbo Debugger for Windows User's Guide

@t To pick a module, highlight it, and then either press Enter, click
twice with the mouse, or choose the Load button. TDW displays
the Module window with the new source module in it.

Working with DLLs and programs

When you're debugging an application that has one or more
DLLs associated with it (as does any Windows application) and
you bring up the Load Modules or DLLs dialog box, you see in
the DLLs & Programs list (the list on the right) a list of DLLs and
.EXE files (as well as all the .DRV and .FON files currently loaded
into Windows). This list includes all DLL and .EXE files Windows
currently has loaded, as well as all DLLs that get started when
your application starts up. It does not include any DLLs your
application starts by using a LOADLIBRARY call unless one of
these DLLs is already loaded by your program or by Windows.

The items at the top of this list, marked on the right with an oval,
are your application’s .EXE file and the DLLs your application
calls. If you make no changes, TDW automatically attempts to
load in the symbol table and source for each marked DLL
whenever your application makes a call to that DLL. In addition,
TDW automatically attempts to load the symbol table and source
of any DLL your application starts with a LOADLIBRARY call,
even though the DLL might not appear on the list at first. (It will
appear there after TDW loads it.)

The buttons to the right of this list perform operations on the DLL
or application you have highlighted. The text entry box under-
neath the list lets you add a DLL to the list. You can use these
features as follows:

Table 115 —
DLLs & Programs list dialog ~ Button Description

box controls gumbol load Load in the symbol table and source files
for the DLL or application, regardless of
the Load Symbols setting. This command
overrides the Load Symbols setting and
changes the contents of the Module
Window so you can set breakpoints,
window messages, and so on for the DLL
or application.

Chapter 11, Using Windows debugging features 171

172

Adding a DLL to the
DLLs & Programs list

Table 11.5: DLLs & Programs list dialog box controls (continued)

Load symbols (No/Yes)

Debug startup (No/Yes)

DLL Name

Add DLL

Choose whether to load the DLL symbol
table and source when the application
makes a call to the DLL. You might use this
option to prevent TDW from loading the
symbol table and source of a DLL that you
don’t need to debug. The default setting is
Yes.

Choosing Yes puts an oval next to the DLL
name.

When you reload a program, Load
Symbols is set to Yes for all DLLs and
modules, even for DLLs or modules that
were previously set to No.

Choose whether to debug startup code for
the DLL. The default setting is No.

Choosing Yes puts double exclamation
marks (!!) next to the module or DLL.

These buttons are used for DLLs only. To
debug application startup code, start TDW
with the —| command-line option.

Enter the name of a DLL that isn’t on the
DLLs & Programs list so you can add it to
the list. You can use any file extension you
want. Adding a DLL to the list enables you
to use one of the previous three commands
on it. You can use a full path name if
necessary.

Add the DLL in the text entry box to the
DLLs & Programs list. Any DLL you add
manually has both Load Symbols and
Debug Startup set to Yes.

Before you can set debug options, debug DLL startup code, or
prevent TDW from loading a DLL’s symbol table and source, the
DLL must first be in the DLLs & Programs list. A DLL accessed by
your application might not be in this list because, just after your
application loads, TDW only knows about DLLs that are linked
into the startup code of your application. Your application can
also start a DLL explicitly by using the Windows LOADLIBRARY
function; TDW won’t know about it until your application calls

LOADLIBRARY.

There are two different types of startup code mentioned in this
section: your application’s startup code and DLL startup code.

Turbo Debugger for Windows User's Guide

When your application starts a DLL, the DLL’s startup code is
then executed. Some DLLs are started before your application’s
startup code runs, and some are started during or afterwards.
There are also two types of DLL startup code, explained later
under “Debugging DLL startup code.”

If you want to add a DLL to the DLLs & Programs list, bring up
the Load Modules or DLLs dialog box (press F3 or choose View |
Modules), move to the DLL Name text entry box, enter the name
of the DLL (enter the full path if necessary), then press the Add
DLL button to add it to the list.

Setting debug options If you want to set breakpoints or watches or some other debug
inaDLL option for a DLL, bring up the Load Modules or DLLs dialog box
(press F3 or choose View | Modules), highlight the DLL on the
DLLs & Programs list, then choose Symbol Load to bring up the
DLL in a Module window. Once you're in the Module window,
you can perform your operations on the DLL.

Controlling TDW’s By default, TDW loads in the symbol table and source of every
loading of DLL symbol DLL that your application accesses, but only if the DLL has a
tables TDW-compatible symbol table. A DLL has a symbol table
compatible with TDW if it was compiled with debugging infor-
mation turned on and the compiler was a Borland language
compiler.

Because it takes time to load in a DLL’s symbol table and then
load in the original application’s symbol table once the DLL
routine has finished, you might want to disable TDW’s default
operation for DLLs you don’t want to debug. To prevent TDW
from loading a DLL’s symbol table, bring up the Load Modules or
DLLs dialog box (press F3 or choose View | Modules), find the
DLL on the DLLs & Programs list, highlight it, and then push the
Load Symbols No button.

Debugging DLL startup By default, TDW does not debug DLL startup code and only loads
code a DLL’s symbol table when your application makes a call to a DLL
entry point. TDW then brings up the Module or CPU window
with the current line marker at the beginning of the DLL routine
called by the application.

TDW debugs DLL startup code if you tell it to. You can use TDW
to debug either of two types of DLL startup code:

Chapter 11, Using Windows debugging features 173

What kind of startup code

are you debugging?

Is your application already

174

loaded?

Doing startup code
debugging

m The initialization code immediately following LibMain (the
default)

m The assembly-language code linked into the DLL that does
initial startup and contains emulated math packages for the size
model the DLL is running in (selected by starting TDW with the
-l command-line option)

After you specify startup debugging for one or more of the DLLs
in your application, TDW loads in the symbol table for each DLL
either when your application startup code starts the DLL or when
your application makes a LOADLIBRARY call.

If you try to load your application and then set startup
debugging, TDW might not behave as you expect, since some or
all of the DLLs might already have been loaded. Therefore, you
should set startup debugging by doing either of the following:

m Setting the DLLs before you load your application

m Loading your application, indicating the DLLs for startup
debugging, and then restarting your application (Ctr-F2 or Run |
Program Reset)

With all these preliminaries in mind, use the following steps to
specify startup debugging for one or more DLLs and to debug
those DLLs’ startup code:

1. Bring up the Load Modules or DLLs dialog box (press F3 or
choose View | Modules).

2. If no program is loaded, skip to step 5. Otherwise, find a DLL
on the DLLs & Programs list and highlight it.

3. Select the Debug Startup Yes button.

4. Repeat steps 2 and 3 until you've set startup debugging for all
DLLs you're interested in.

5. If a DLL you want isn’t on the list or there are no DLLs on the
list (because you haven’t loaded your application yet), use the
DLL Name text entry box to enter each DLL name and add it
to the list using the Add DLL button.

6. When you've set all the DLLs for which you want to debug
startup code, choose either File | Load to load in your
application (if you haven’t loaded it yet) or Run | Program
Reset (Ctr-F2) to reload your application (if you loaded it
before setting startup debugging).

Turbo Debugger for Windows User’s Guide

7. Before you run the application, you should set breakpoints to
guarantee that the DLLs will return to your application after
the startup code executes. With your application’s source code
in the Module window,

* Set a breakpoint on the first line of your application.

b. If you're debugging startup code for any DLLs loaded with
LOADLIBRARY calls, set a breakpoint on the first line of
code after each of these calls.

8. As your application starts each DLL, TDW puts you either in
the Module window at the DLL’s LibMain (the default) or in
the CPU window at the start of the assembly code listing for
the startup library (because you ran TDW using the —I option).

9. When you've finished debugging startup code for a DLL, press
F9 to run through the end of the startup code and return to the
application. If you've specified any more DLLs for startup
code debugging, TDW displays startup code for those DLLs
when your application starts them.

C,> Besure to run to the end of a DLL’s startup code before reloading the
current application or loading a new one. If you don't, the partially
executed DLL startup code might cause Windows to hang, forcing
you to reboot.

Converting

memory handles Windows uses memory handles instead of addresses for memory
to addresses objects because it performs its own memory management and can
change the physical location in memory of an object. If you need
the actual address referred to by a memory handle, you can use
the TDW built-in typecast symbols Ih2fp (for a local handle) and
gh2fp (for a global handle) to dereference the handle.

You use these typecasting symbols in TDW just as you use the
regular Turbo Pascal typecasting symbols for pointers. For
example, you could cast the local memory handle HLocalMemory
using two methods:

m You could use the Data | Inspect window to evaluate the
expression 1h2fp (HLocalMemory).

m You could use the Type Cast command in the Inspector local
window and enter [h2fp as the type.

Chapter 11, Using Windows debugging features , 175

In either case, the expression evaluates to the first character of the
memory block pointed to by HLocalMemory.

You could also use either of these techniques to do a more compli-
cated cast—for example, a two-stage cast from a handle into a
character pointer into a pointer to the data in memory, as follows:

Mystruct (1h2fp (HLocalMemory)) "

176 Turbo Debugger for Windows User’s Guide

12

Assembler-level debugging

Formore information on This chapter is for programmers who need to take a lower-level

assembler—lg;ilhceleﬁ?:g[)%ncg\, look at their code. It gives a brief introduction to the CPU window
ASMI;EBUG. DWin the and the six panes of that window. You can also get online Help

language compiler directory information about any pane of this window and its local menu by

on your hard disk. positioning the cursor in the pane and pressing F1.

When source debugging isn’t enough

When you’re debugging a program, most of the time you refer to
data and code at the source level; you refer to symbol names
exactly as you typed them in your source code, and you proceed
through your program by executing pieces of source code.

Sometimes, however, you need information you can’t get from the
source code Module window, such as

m looking at the contents of an area in memory referenced by a
protected-mode selector

m looking at the exact instructions that the compiler generated for
a line of source code, as well as the contents of the stack and
CPU registers

m tracing through Windows code to find where your program
stopped

To perform any of these functions, you have to use the CPU
window. In addition, it helps to be familiar with Windows’ use of

Chapter 12, Assembler-level debugging 177

memory and to have knowledge of both the 80x86 family of pro-
cessors and the machine instructions the compiler generates for
your source code. Because many excellent books are available
about the internal workings of the CPU, we won’t go into that in
detail here. You can quickly learn how the compiler turns your
source code into machine instructions by looking at the
instructions generated for each line of source code.

The CPU window

Figure 121
The CPU window

178

The CPU window shows you the entire state of the CPU. You can

m examine and change the bits and bytes that make up your pro-
gram’s code and data

m access any area of memory referenced by a selector
m use the built-in assembler in the Code pane to patch your pro-

tamnararily hy antaring ingtriictiong o
61011[chuyularh}' U‘y Tl Lll6 L1101 UL L1IVILO (—I\ﬂ\,tl] ao yUu VVOIA

type assembler source statements

m access the underlying bytes of any data structure, display them
in a number of formats, and change them

=[w]=REMOTE CPU 80386 ; 3=[t][V]=

TDDEMOW.186: begin { program } A ax 0000 c=0
cs:0522»9AC8220501 call 0105:22C8 s bx 2000 z=0
cs:0527 9A02002D12 call 122D:0002 cx 2000 s=0
cs:052C 9A0BOE2512 call 1225:0E0B dx 0000 0=0
cs:0531 55 push bp si 0000 p=0
cs:0532 89ES mov bp,sp di 1236 a=0
cs:0534 B80001 mov ax,0100 bp 0000 i=1
cs:0537 9A40032D12 call 122D:0340 sp 2590 d=0
¢s:053C 81EC0001 sub sp,0100 ds 1235

TDDEMOH 187 In1't- v es 1205

A p— | < 1235

1235 Data Loade- 17 bytes Read/Write, Up| cs 121D

123D Invalid ip 0522
ds:0000 00 00 00 00 05 00 00 00 -
ds:0008 00 00 00 00 00 00 00 00
ds:0010 OC 4C 65 74 74 65 72 3A Qletter: $s:2592 0000
ds:0018 20 20 20 20 20 0OC 46 72 QFr $5:2590»0000

Open a CPU window by choosing View | CPU from the menu bar.
Depending on what you're viewing in the current window, the
new CPU window comes up positioned at the appropriate code,
data, or stack location, thus providing a convenient method for
taking a low-level look at the code, data, or stack location your
cursor is currently on.

Turbo Debugger for Windows User’s Guide

The following table shows where your cursor is positioned when
you choose the CPU command:

Current window CPU pane Position
Stack window Stack Top of stack frame for
highlighted item

Module window Code Address of item

Variable window Data/Code Address of item

Watches window Data/Code Address of item

Inspector window Data/Code Address of item

Breakpoint Code Breakpoint address
(if not global)

Other area Code Current CS:IP

TDW also puts you in the CPU window if TDW regains control
from your application when the code being executed is Windows
code or DLL code with no debugging information.

The CPU window has six panes. To go from one pane to the next,

@ press Tabor Shift-Tab, or click the pane with your mouse. The line
at the top of the CPU window shows what processor type you
have (8086, 80286, 80386, or 80486).

m The top left pane (Code pane) shows the disassembled program
code intermixed with the source lines.

m The second top pane (Register pane) shows the contents of the
CPU registers.

m The top right pane (Flags pane) shows the state of the eight
CPU flags.

m The middle left pane (Seleétor pane—below the Code pane)
shows all Windows selectors and indicates the general contents
of each.

m The bottom left pane (Data pane—below the Selector pane)
shows a raw hex dump of any area of memory you choose.

m The bottom right pane (Stack pane) shows the contents of the
stack.

As with all windows and panes, pressing Alt-F10 pops up the
pane’s local menu. If control-key shortcuts are enabled, pressing
the Ctrl key with the highlighted letter of the desired local menu
command executes the command.

While in the Code pane, Data pane, and Stack pane of the CPU
window, it’s possible to scroll outside the current protected-mode
segment. Since addresses lying outside the protected-mode
segment are considered invalid by the operating system, these

Chapter 12, Assembler-level debugging 179

The Code pane

addresses will display data as question marks while inside the
CPU window panes.

In the Code, Data, and Stack panes, you can press Ctrl « and

Ctrl - to shift the starting display address of the pane by 1 byte up
or down. Pressing these keys is easier than using the Goto
command if you just want to adjust the display slightly.

An arrow (») shows the
current program location
(CS:IP).

The disassembler

180

This pane shows the disassembled instructions at an address that
you choose.

There are two ways of choosing an address:

m Use the local menu Goto, Origin, Follow, Caller, or Previous
command.

m Position on a code selector in the Selector pane, then choose

Examine to display the contents of the selector in the Code
pane.

The left part of each disassembled line shows the address of the
instruction. The address is displayed either as a hex segment and
offset, or with the segment value replaced with the CS register
name if the segment value is the same as the current CS register. If
the window is wide enough (zoomed or resized), the bytes that
make up the instruction are dlsplayed The disassembled instruc-
tion appears to the right.

If the highlighted instruction in the Code pane references a
memory location, the memory address and its current contents
are displayed on the top line of the CPU window. This feature lets
you see both where an instruction operand points in memory and
the value that is about to be read or written over.

The Code pane automatically disassembles and displays your
program instructions. If an address corresponds to either a global
symbol, static symbol, or a line number, the line before the dis-
assembled instruction displays the symbol if the Mixed display
mode is set to Yes. Also, if there is a line of source code that corre-
sponds to the symbol address, it is displayed after the symbol.

Turbo Debugger for Windows User’s Guide

Global symbols appear simply as the symbol name. Static symbols
appear as the module name, followed by a period (.), followed by
the static symbol name. Line numbers appear as the module
name, followed by a period (.), followed by the decimal line
number.

When an immediate operand is displayed, you can infer its size
from the number of digits: A byte immediate has 2 digits, and a
word immediate has 4 digits.

The Register and Flags panes

The Register pane, which is the top pane to the right of the Code
pane, shows the contents of the CPU registers.

The top right pane is the Flags pane, which shows the state of the
eight CPU flags. The following table lists the different flags and
how they are shown in the Flags pane:

Letter in pane Flag name

Carry

Zero

Sign

Overflow

Parity

Auxiliary carry
Interrupt enable
Direction

Q™o O v NN

You can use the local menu of the Register pane to increment or
decrement a register by 1, to set the register to 0, to change the
register, or to toggle between displaying the register as 16-bit or
32-bit values (requires an 80386 processor or greater).

The local menu of the Flags pane allow you to toggle the flag
between 0 and 1.

The Selector pane

This pane shows a list of protected-mode selectors and indicates
some information about each one.

A selector can be either valid or invalid. If valid, the selector
points to a location in the protected-mode descriptor table

Chapter 12, Assembler-level debugging 181

The Selector

pane local menu

182

Selector

corresponding to a memory address. If invalid, the selector is
unused.

For a valid selector, the pane shows the following:

m if the contents are data or code

m if the memory area the selector references is loaded (present in
memory) or unloaded (swapped out to disk)

m the length of the referenced memory segment in bytes
If the selector references a data segment, there’s additional

information on the access rights (Read /Write or Read only) and
the direction the segment expands in memory (Up or Down).

At the Selector pane, press Alt-F10 to pop up the local menu or, if
control-key shortcuts are enabled, use the Cirl key with the
highlighted letter of a command to access it.

You can use the local menu of the Selector pane to go to a new
selector (the Selector command) or see the contents of the selector
currently highlighted in the Selector pane (the Examine
command). The contents display in either the Code pane or the
Data pane, depending on their nature.

Selector
Examine...

Prompts you to type a selector to display in the pane. You can use
full expression syntax to enter the selector. If you enter a numeric
value, TDW assumes it is decimal unless you use the syntax of the
current language to indicate that the value is hexadecimal.

For example, if the current language were C, you could type the
hexadecimal selector value 7F as 0x7F. For Pascal, you'd type it as
$7F. You could also type the decimal value 127 in order to go to
selector 7F.

Another method of entering the selector value is to display the
CPU window and check the segment register values. If a register
holds the selector you're interested in, you can enter the name of
the register preceded by an underscore (_). For example, you
could type the data segment register as _DS.

Turbo Debugger for Windows User’s Guide

Examine

The Data pane

Displays the contents of the memory area referenced by the
current selector and switches focus to the pane where the contents
are displayed. If the selector points to a code segment, the
contents are displayed in the Code pane. If the contents are data,
they’re displayed in the Data pane.

This pane shows a raw display of an area of memory you've
selected. The leftmost part of each line shows the address of the
data displayed in that line. The address is displayed either as a
hex segment and offset, or with the segment value replaced with
one of the register names if the segment value is the same as that

register. The Data pane matches registers in the following order:
DS, ES, SS, CS.

Next, the raw display of one or more data items is displayed. The
format of this area depends on the display format selected with
the Display As local menu command. If you choose one of the
floating-point display formats (Comp, Float, Real, Double,
Extended), a single floating-point number is displayed on each
line. Byte format displays 8 bytes per line, Word format displays 4
words per line, and Long format displays 2 long words per line.

When the data is displayed as bytes, the rightmost part of each
line shows the display characters that correspond to the data
bytes displayed. TDW displays all byte values as their display
equivalents, so don’t be surprised if you see funny symbols
displayed to the right of the hex dump area—these are just the
display equivalents of the hex byte values.

There are two ways of choosing an address:

m Use the local menu Goto, Follow, or Previous command.

m Position on a data selector in the Selector pane, then choose
Examine to display the contents of the selector in the Data pane.

The Data pane local menu lets you go to a new address, search for
a character string, change bytes at the current cursor location,
follow near or far pointer chains, restore a previous address,
change how data appears in the window, and move, change, read,
and write blocks of memory.

Chapter 12, Assembler-level debugging 183

The Stack pane

An arrow (») shows the The Stack pane, in the lower right corner of the CPU window,
current stack pointer (S1P). - ghows the contents of the stack. The commands in the local menu
let you change positions in the stack and change values of words
on the stack.

The Dump window

The Dump window, opened by choosing View | Dump, shows
you a raw data dump of any area of memory. It works much like
the Data pane in the CPU window (see page 183), except that,
when zoomed to full size, the Dump Window shows twice as
much data on a single line.

i [=]=Dump- 3=[11[V1=

The D Figure 12.2 ds:0000 CD 20 00 AO 00 9A FO FE = & Usm 4
e Dump window ds:0008 1B 02 B2 01 22 31 7C 01 <offo"lje ®
ds:0010 22 31 88 02 52 2B EZ 1D "1seR+le %

ds:0018 01 01 01 00 03 FF FF FFosow v

Typically, you use this window if you're in an Inspector window
and you want to look at the raw bytes that make up the object you
are inspecting. Using View | Dump from the Inspector window
gets you a Dump window that’s positioned to the data in the
Inspector window.

The Registers window

=[n]=Regs=3=[
ax 0000
bx 0000
cx 0000
dx 0000
si 0000

di 0000 You can perform the same functions from the local menu of the
bp 0000

op 3FFE Registers window as you can from the local menus of the

ds 61AF Registers pane and the Flags pane.
es 61AF
ss 668F
cs 61BF
ip 084E

The Registers window shows you the contents of the CPU
registers and flags. It works like a combination of the Registers
and Flags panes in the CPU window (see page 181).

W e

O+ TOWVNNO
[y =-X=-T=-X-X=X=-1|

184 ‘ Turbo Debugger for Windows User's Guide

13

Debugging a standard Pascal
application

Debugging is like the other phases of designing and imple-
menting a program—part science and part art. There are specific
procedures that you can use to track down a problem, but at the
same time, a little intuition goes a long way toward making a long
job shorter.

The more programs you debug, the better you get at rapidly
locating the source of problems in your code. You learn tech-
niques that suit you well, and you unlearn methods that have
caused you problems.

In this chapter, we discuss some different approaches to debug-
ging, talk over the different types of bugs you may find in your
programs, and suggest some ways to test your program to make
sure that it works—and keeps on working.

Let’s begin by looking at where to start when you have a program
that doesn’t work correctly.

When things don’t work

First and foremost, don’t panic! Even the most expert pro-
grammer seldom writes a program that works the first time.

To avoid wasting a lot of time on fruitless searches, try to resist
the temptation to randomly guess where a bug might be. It is

Chapter 13, Debugging a standard Pascal application 185

better to use a universally tried-and-true approach: divide and
conquer.

Make a series of assumptions, testing each one in turn. For
example, you can say, “The bug must be occurring before function
xyz is called,” and then test your assumption by stopping your
program at the call to xyz to see if there’s a problem. If you do
discover a problem at this point, you can make a new assumption
that the problem occurs even earlier in your program.

If, on the other hand, everything looks fine at function xyz, your
initial assumption was wrong. You must now modify that
assumption to “The bug is occurring sometime after function xyz
is called.” By performing a series of tests like this, you can soon
find the area of code that is causing the problem.

That'’s all very well, you say, but how do I determine whether my
program is behaving correctly when I stop it to take a look? One
of the best ways of checking your program'’s behavior is to
examine the values of program variables and data structures. For
example, if you have a routine that clears an array, you can check
its operation by stopping the program after the function has
executed, and then examining each member of the array to make

sure that it’s cleared.

Debugging style

Everyone has their own style of writing a program, and everyone
develops their own style of debugging. The debugging sugges-
tions we give here are just starting points that you can build on to
mold your own personal approach.

Many times, the intended use of a program influences the
approach you take to debug it. If a program is for your own use or
will only be used once or twice to perform a specific task, a full-
scale testing of all its components is probably a waste of time,
particularly if you can determine that it is working correctly by
inspecting its output. If a program is to be distributed to other
people or performs a task of which the accuracy is hard to
determine by inspection, your testing must be far more rigorous.

186 Turbo Debugger for Windows User’s Guide

Run the whole
thing

Incremental
testing

Types of bugs

For a simple or throwaway program, the best approach is often
just to run it and see what happens. If your test case has
problems, run the program with the simplest possible input and
check the output. You can then move on to testing more compli-
cated input cases until the output is wrong. This testing
procedure will give you a good feeling for just how much or how
little of the program is working.

When you want to be very sure that a program is healthy, you
must test the individual routines, as well as checking that the
program works as expected for some test input data. You can do
this in a couple of ways: You can test each routine as you write it
by making it part of a test program that calls it with test data. Or
you can use TDW to step through the execution of each routine
when the whole program is finished.

Bugs fall into two broad categories: those peculiar to the language
you're working in and those that are common to any program-
ming language or environment.

By making mental notes as you debug your programs, you learn
both the language-specific constructs you have trouble with, and
also the more general programming errors you make. You can
then use this knowledge to avoid making the same mistakes in
the future, and to give you a good starting point for debugging
future programs.

Understanding that each bug is an instance of a general family of
bugs or misunderstandings will improve your ability to write
errorless code. After all, it’s better to write bug-free code than to
be really good at finding bugs.

Chapter 13, Debugging a standard Pascal application 187

188

General bugs

Hidden effects

Assuming initialized
data

The following examples barely scratch the surface of the kinds of
problems you can encounter in your programs.

If you are careless about using global variables in procedures or
functions, a call to a procedure or function can leave unexpected
contents in a variable or data structure:

program Buffers;
uses WinCrt, Strings;

var
WorkBuf,
AllCaps: PChar;

procedure Convert (S: PChar);
var
I, Len: Integer;

begin
Len := StrLen(s);
StrCopy (WorkBuf, S);
for I := 1 to Len do

{...)

end;

begin
WorkBuf := ’all done’;

AllCaps := 'SNAFU';

Convert (AllCaps);

Writeln(WorkBuf);
end.

Here, the correct thing to do would be to have the procedure use
its own private work buffer.

Don’t assume that another routine has already set a variable for
you:

uses Strings;

var
WorkBuf: PChar;

procedure AddWorkString(S: PChar);

Turbo Debugger for Windows User’s Guide

Not cleaning up

Fencepost errors

Pascal-specific
bugs

begin
StrCopy (WorkBuf, S); { oops }
end;

You should code a routine of this sort defensively by adding the
statement

if (WorkBuf = nil) then getmem(WorkBuf, 100);

This sort of bug can crash your program by exhausting heap
space:

function CrunchString(S: PChar): PChar;
var
Work: PChar
begin
getmem(Work, 100);
StrCopy (S, Work);
{...}
CrunchString := S; { whoops--Work still allocated }
end;

These bugs are named after the old brain teaser that goes “If I
want to put up a 100-foot fence with posts every 10 feet, how
many fenceposts do I need?” A quick but wrong answer is ten
(what about the final post at the far end?). Here’s a simple
example:

i:=1;

while i < 10 do

begin

.. { oops--only 9, not 10 }
end;

Here you can easily see the numbers 1 and 10, and you think that

your final test value is ten. (Better make that < into a <=.)

Because of the strong type-checking and error-checking features
of Pascal, there are few bugs endemic to the language itself.
However, because Turbo Pascal for Windows gives you the power
to turn off much of that error checking, you can introduce errors
that you might not have otherwise. And even with Pascal, there
are ways of getting into trouble.

Chapter 13, Debugging a standard Pascal application 189

Uninitialized variables Turbo Pascal does not initialize variables for you; you must do it
yourself, either through assignment statements or by declaring
them as typed constants. Consider the following program:

program Test;
uses WinCrt;

var
I,J,Count: Integer;

begin
for I := 1 to Count do begin
J = I*I;
Writeln(I:2, " ', J:4)
end
end.

Count has whatever random value occupied its location in
memory when it was created, so you have no idea how many
times this loop is going to execute.

Furthermore, variables declared within a procedure or function
are created each time you enter that routine and destroyed when
you exit; you cannot count on those variables retaining their
values between calls to that routine.

Problems with pointers Pointer errors can be the most elusive of bugs. When a program
hangs or produces strange, unpredictable results, one of the first
places to look is at your use of pointers.

Three common errors occur with pointers. The first is using them
before you have assigned them a value (nil or otherwise). Just like
any other variable or data structure, a pointer is not automatically
initialized just by being declared. It should be explicitly set to an
initial value (by passing it to New or assigning it nil) as soon as
possible.

Second, don’t reference a nil pointer, that is, don’t try to access the
data type or structure that the pointer points to if the pointer itself
is nil. For example, suppose you have a linear linked list of
records, and you want to search it for a record with a given value.
Your code might look like this:

190 Turbo Debugger for Windows User’s Guide

function FindNode (Head: NodePtr; KeyVal: Integer): NodePtr;

var

Temp : NodePtr;
begin

Temp := Head;

while (Temp".KeyVal <> Val) and (Temp <> nil) do
Temp := Temp”.Next;
FindNode := Temp
end; { of function FindNode }

If Val isn’t equal to the Key field in any of the nodes in the linked
list, this code tries to evaluate Temp”.Key when Temp is nil,
resulting in unpredictable behavior. Solution? Rewrite the
expression to read

while (Temp <> nil) and (Temp".Key <> Val)

In addition, enable short-circuit Boolean evaluation by using the
TPW {$B-} option or choosing Options | Compiler to display the
Compiler Options dialog box, then clicking Short Circuit. That
way, if Temp is nil, the second term is never evaluated.

Finally, don’t assume that a pointer is set to nil just because you've
passed it to Dispose or FreeMem. The pointer still has its original
value; however, the memory it points to is now free to be used for
other dynamic variables. You should explicitly set a pointer to nil
after disposing of its data structure.

Scope confusion Pascal lets you nest procedures and functions very deeply, and
each of those procedures and functions can have its own
declarations. Consider the following program:

program Confused;
uses WinCrt;

var
A,B,T: Integer;

procedure Swap (var A,B: Integer);

var
T: Integer;
begin
Writeln(’2: A, B, T ="', A:3, B:3, ' ', T);
T :=4;
A :=B;
B :=T;
Writeln(’3: A, B, T ="', A:3, B:3, ' ', T)
end; { of procedure Swap }

Chapter 13, Debugging a standard Pascal application 191

192

begin { main body of Confused }
A :=10; B :=20; T := 30;

Writeln(’1: A, B, T ="', A:3, B:3, " ', T);

Swap (B,A) ; '

Writeln(’4: A, B, T ="', A:3, B:3, " ', T);
end. { of program Confused }

What's the output of this program? It will look something like
this:

1: A,B,T = 10 20 30
2: A,B,T= 2010 22161
3: A,B,T= 10 20 20
4: 2,B,T = 2010 30

What's happening here is that you have two versions each of A, B,
and T. The global versions are used in the main body of the pro-
gram, while Swap has versions local to itself—its formal
parameters A and B, and its local variable T. To further confuse
things, we made the call Swap(B,A), which means that the formal
parameter A is actually the global variable B and vice versa. And,
of course, there is no correlation between the local and global
versions of T.

There was no real “bug” here, but problems can arise when you
think that you're modifying something that you aren’t. For
example, the variable T in the main body didn’t get changed, even
though you thought it might have. This is the opposite of the
“hidden effects” bug mentioned on page 188.

If you also had the following record declaration, things could get
even more confusing;:

type
RecType = record
A,B : Integer;
end;

var
A,B : Integer;
Rec : RecType;

Inside a with statement, a reference to A or B would reference the
fields, not the variables.

Turbo Debugger for Windows User’s Guide

Superfluous semicolons

Undefined function
return value

Pascal allows a “null” statement (one consisting only of a semi-
colon). Placed at the wrong spot, this statement can create all
kinds of problems. Consider the following program:

program Test;

uses WinCrt;

var
I,J : Integer;
begin
for I := 1 to 20 do;
begin
J::=1*1;
Writeln(I:2,’ ',J:4)
end;
Writeln(’All done!’)
end.

The output of this program is not a list of the first 20 integers and
their squares; it’s simply

20 400
All done!

That's because the statement for I := 1 to 20 do; ends with a
semicolon. This means it executes the null statement 20 times.
After that, the statements in the begin..end block are executed,
then the final Writeln statement. To fix this, just eliminate the
semicolon following the do keyword.

If you write a function, you must be sure that the function name
has some value assigned to it before you exit the function.
Consider the following section of code:

const
NIMax = 100;
type
NumList = array(l..NIMax] of Integer;

function FindMax(List : Numlist; Count : Integer) : Integer;
var
I, Max’: Integer;

Chapter 13, Debugging a standard Pascal application 193

begin
Max := List([1l];
for I := 2 to Count do
if List[I] > Max then

begin
Max := List[I];
FindMax := Max
end

end; { of function FindMax }

This function works fine—as long as the highest value in List isn’t
in List[1]. In that case, FindMax never gets assigned a value. A
correct version of the function would use this:

begin
Max := List[1];
for I := 2 to Count do
if List[I] > Max then

Max := List[I];
FindMax := Max
end; { of function FindMax }

Decrementing Word or Be careful not to decrement an unsigned scalar (Byte or Word)
Byte variables while testing for >= 0. The following code produces an infinite

loop:
You can use arithmetic var
overflow checking {$Q+} to w: Word:
catch this bug at runtime. :
begin
w o= 5;
while w >= 0 do
wi=w-1;
end.

After the fifth iteration, w equals 0. The next time through, it’s
decremented to 65,535 (because words range from 0 to 65,535),
which is still >= 0. You should use an Integer or Longint in such
cases.

Ignoring boundary or Note that both versions of the function FindMax in the previous
special cases section “Undefined function return value” assume that

Count >= 1. However, there may be times when Count = 0; that is,
the list is empty. If you call FindMax in that situation, it returns
whatever happens to be in List[1]. Likewise, if Count > NLMax,
you’'ll end up either generating a run-time error (if range-checking
is enabled) or searching through memory locations not contained
in List for the maximum value.

194 Turbo Debugger for Windows User’s Guide

There are two possible solutions to this. One, of course, is never to
call FindMax unless Count is in the range 1..NLMax. This isn’t an
impertinent comment; a serious part of good software design is to
define the requirements for calling a given routine, then ensuring
they are met each time that routine is called.

The other solution is to test Count and return some predetermined
value if it isn’t in the range 1..NLMax. For example, you might
rewrite the body of FindMax to look like this:

begin
if (Count < 1) or (Count > NLMax) then
Max := -32768
else
begin
Max := List([1];

for I := 2 to Count do
if List[I] > Max then

Max := List([I]
end;
FindMax := Max
end; { of function FindMax }

This leads to the next type of Pascal pitfall: range errors.

Range errors Turbo Pascal has range-checking turned off by default. This
produces faster, more compact code, but it also lets you commit
certain types of errors, such as assigning to variables values
outside their allowed range or indexing nonexistent elements in
arrays as shown in the previous example.

The first step in finding such errors is to turn range-checking back
on by inserting the {$R+} compiler option into your program,
compiling the program, and running it again. If you know (or
suspect) where the error is, you can put this directive above that
section and add a corresponding {$R-} directive afterward, thus
enabling range-checking for that section only. If a range error
does occur, your program stops with a run-time error, and Turbo
Pascal shows you where the error occurred.

Ly If you are using TPCW to compile your program, you can use the
/F command-line option to find the error. See the Turbo Pascal for
Windows User’s Guide for more information.

One common type of range error happens when you are indexing
through an array using a while or repeat loop. For example,
suppose you are looking for an array element containing a certain

Chapter 13, Debugging a standard Pascal application 195

value. You want to stop when you’ve found it or when you reach
the end of the array. If you've found it, you want to return the
index of the element; otherwise, you want to return 0. Your first
effort might look like this:

function FindVal (List : NumList; Count,Val : Integer) : Integer;
var
I : Integer;
begin
Findval := 0;
while (I <= Count) and (List[I] <> Val) do
Inc(I);

if I <= Count then
Findval := I
end; { of function FindVal }

Unfortunately, this approach could result in a run-time error if Val
isn’t in List, and you're using normal Boolean evaluation. Why?
Because the last time the test is made at the top of the while loop, I
equals Count+1. If Count = NLMax, you're beyond the limits for
List.

The solution to this type of problem is to select short-circuit
Boolean evaluation, either by by using the Turbo Pascal {$B-}
option or choosing Options | Compiler to display the Compiler
Options dialog box, then clicking Short Circuit. That way, if I >
Count, the expression

List[I] <> Val

is never evaluated.

Accuracy testing

Testing boundary

196

conditions

Making a program work with valid input is only part of the job of
testing. The following sections discuss some important test cases
that any program or routine should be subjected to before you can
consider it bug free.

Once you think a routine works with a range of data values, you
should subject it to data at the limits of the range of valid input.
For example, if you have a routine to display a list from 1 to 20

Turbo Debugger for Windows User’s Guide

items long, you should make sure it behaves correctly both when
there is exactly 1 item and exactly 20 items in the list. This can
flush out the one-too-few and one-too-many “fencepost” errors
(described on page 189).

Invalid data input

Once you are sure that a routine works with a full range of valid
input, check that it behaves correctly when it’s given invalid
input. Check that erroneous input is rejected, even when it’s very
close to valid data. For example, the previous routine that
accepted values from 1 to 20 should make sure that 0 and 21 are
rejected.

Empty data input

Empty data input is a frequently overlooked area, both in testing
and in designing a program. If you write a program to have
reasonable default behavior when some input is omitted, you
greatly enhance its ease of use.

Debugging as part of program design

When you first start designing your program, you can plan for the
debugging phase. One of the most basic tradeoffs in program
design involves the degree to which the different parts of your
program check that they are getting valid input and that their
output is reasonable.

If you do a lot of checking, you end up with a very resilient pro-
gram that can often tell you about an error condition but
continues to run after performing some reasonable recovery. You
also end up with a larger and slower program, This type of pro-
gram can be fairly easy to debug because the routines themselves
inform you of invalid data before the dangers can be propagated.

You can also implement a program whose routines do little or no
validation of input or output data. Your program will be smaller
and faster, but bad input data or a small bug can bring things to a
grinding halt. This type of program can be the most difficult to
debug, since a small problem can end up manifesting itself much
later during execution. This makes it hard to track down the
original error.

Chapter 13, Debugging a standard Pascal application 197

Most programs end up being a mixture of these two techniques.
You should treat input from external sources (such as the user or
a disk file) with greater suspicion than data from one internal
routine calling another.

The sample debugging session

Looking for errors

198

This sample session uses some of the techniques we talked about
in the previous sections. The program you are debugging,
TDDEMOWSB, is a version of the demonstration program used in
Chapter 3 (TDDEMOW.PAS), except this one has some deliberate
bugs in it. As with TDDEMOW, TDDEMOWB uses WinCrt to
display its output through Windows.

Make sure that your working directory contains the two files
needed for the debugging demonstration, TDDEMOWB.PAS and
TDDEMOWRB.EXE. (The B in these file names stands for “buggy.”)

Before we start the debugging session, let’s run the buggy demo
program to see what’s wrong with it. The program is already
compiled and on your distribution disk.

To simplify viewing the source code and running and debugging
the program, start Turbo Pascal for Windows (pick its icon from
the Windows Program manager) and use File | Open to load in
TDDEMOWRB.

When you see the program’s source code come up in its edit
window, either choose Run | Run or press Ctrl-F9 to run the
program.

You see a window come up with the program’s file name as its
title and a prompt for lines of text. Before continuing, enlarge the
window to its maximum size so you can see all the program
output. Then enter two lines of text exactly as follows:

ABC DEF GHI
abc def ghi

Press Enter on an empty line to end your input. TDDEMOWB then
prints out its analysis of your input, as follows:

Turbo Debugger for Windows User’s Guide

Deciding your
plan of attack

9 char(s) in 3 word(s) in 2 line(s)
Average of 0.67 words per line

Word length: 1 2 3 4 5 6 7 8 9 10

Frequency: 00 3 0 0 0 0 0 0 O

Letter: M

Frequency: 11 1 1 1 1 1 1 0 0 ¢
Word starts: 10 0 1 0 0 1 0 0 0 0 0 O
Letter: Z

Frequency: o 0 0 0 0 0 0 0 0 0 0 0 O

Word starts: 60 0 ¢ 0 0 0 0 0 0 0 0 O

There are four separate problems with this output:

1. The number of words is wrong (3 instead of 6).
2. The number of words per line is wrong (0.67 instead of 3.00).

3. The column headings for the second and third tables display
only one letter each (instead of A.M and N..Z).

4. You typed two lines, each containing a letter from A.., but the
letter frequency tables show only a count of one each for those
letters.

At this point, you can close the window and return to Turbo
Pascal for Windows.

Your first task is to decide which problem to attack first. A good
rule of thumb is to start with the problem that appears to be
happening first. In this program, after procedure Init is called to
initialize data, keyboard input is read by function GetLine and
then processed by procedure ProcessLine until the user enters an
empty string. ProcessLine scans each input string and updates the
global counters. Then, the results are displayed by procedure
ShowResults. '

The average number of words per line is computed by
ShowResults, using the number of lines and words. Since the word
count seems to be off, take a look at ProcessLine to see how
NumWords is updated. Even though NumWords is wrong, the 0.67
words-per-line figure doesn’t make sense. There’s probably an
error in the ShowResults calculation, which needs your attention as
well.

Chapter 13, Debugging a standard Pascal application 199

Starting TDW

Moving through

200

the program

The column titles for all the tables are drawn at the request of
ShowResults. You should wait until the main loop terminates
before tracking down the second and third bugs. Since the letter
and word counts are wrong, it’s a good bet that something is
amiss inside ProcessLine, and that’s where you should start
looking for the first and fourth bugs.

Now is the time to actually start debugging—after you’'ve thought
about the problem for a moment and decided on a rough plan of
attack.

To start the debugging sample session, make sure the Turbo
Pascal edit window with TDDEMOWB is current, then use the
Run | Debugger command.

TDW loads the buggy demo program and displays the startup
screen. If you want to exit from the tutorial session and return to
Turbo Pascal, press Alt-X at anv time, If you get hopelessly lost

wiUL rastial, pates/ vaLaily aane. A2 e RVpPLITSSLy 05,

you can always reload the demonstratlon program and start from
the beginning again by pressing Ctrl-F2. (Note that this doesn’t
clear breakpoints or watches.)

There are two approaches to debugging a routine like ProcessLine:
Either step through it line-by-line as it executes and make sure it
does the right thing, or stop the program immediately after
ProcessLine has done its stuff and see if it did the right thing. Since
both the letter and word counts are wrong, you probably ought to
look inside ProcessLine carefully and see how characters are
processed.

Now you’re going to run the program and step inside the call to
ProcessLine. There are many ways to do that. You can press F8 four
times (to step over procedure and function calls), then press 7
once (to trace into the call to ProcessLine). You can also move the
cursor down to line 203, press F4 (Go to Cursor command), type
some letters and press Enter, then press F7 once to step into
ProcessLine.

There are even more ways to get into ProcessLine. Try this one:
Press Alt-F9. A dialog box pops up, prompting you to enter a code
address to run to. Type processline and press Enter. The program
will now run until ProcessLine gains control. When you are

Turbo Debugger for Windows User’s Guide

prompted to enter a string, enter the same data as before (that is,
ABC DEF GHI).

After you enter the first line of data, TDW returns you to the
Module window, which is displaying the first line of ProcessLine.
ProcessLine contains several loops. An outer one scans the entire
string. Inside that loop, there’s one loop to skip over non-letters,
and a second one to process words and letters. Move the cursor to
the while loop on line 159 and press F4 (Go to Cursor).

This loop keeps scanning until it reaches the end of the string or
until it finds a letter. Each character scanned is checked via a call
to a Boolean function, IsLetter. Press F7 to trace into IsLetter.
IsLetter is a nested function that takes a character value and
returns True if it’s a letter; otherwise, False. A not-very-close look
reveals that it checks only for uppercase letters. It should either
check for characters in the range A to Z and 4 to z, or it should
convert the character to uppercase before performing the test.

A quick look at both lines of input that you originally entered
provides a further clue to the source of the bug: You entered both
uppercase and lowercase letters from A to I, but only the upper-
‘case letters entered were displayed in the totals. Now you can see
why. Since the second line of input you originally entered, abc def
ghi, contained only lowercase letters, each character was treated
as whitespace and skipped. Skipping letters throws off both the
letter counts and the word count and solves the mysteries of bugs
#1 and #4.

Get back to the line after the one that called IsLetter by another
navigation technique: Press Alf-F8, which runs past the end
statement of the current procedure or function.

The

Evaluate/ MOdify By the way, there’s another powerful way to verify IsLetter’s
di O'OQ pbox misbehavior. Invoke the Evaluate/Modify dialog box by pressing
Alt-D E, then enter the following expression and press Enter:

IsLetter(’a’") = IsLetter('A’)

A and a are both letters, but the evaluation False in the Result box
confirms that they’re not treated the same by IsLetter. (You can
use the Evaluate/Modify dialog box and Watches window to
evaluate expressions, perform assignments, or, as you did here,
call procedures and functions. For more information, refer to
Chapter 6.)

Chapter 13, Debugging a standard Pascal application 201

202

Inspecting

Press Esc to get rid of the Evaluate/Modify dialog box.

Two bugs down, two to go. Bug #2 is much easier to find than the
previous ones. Press Alt-F8 to exit ProcessLine, then move the
cursor to line 207 and press F4 to run to the cursor position.

TDDEMOWB prompts you for a string. Type abc def ghi and
press Enter, then press Enter the second time the prompt appears.
Now press F7 to step into ShowResults.

Remember, you're trying to find out why the average number of
words per line is incorrect. The first line in ShowResults calculates
the number of lines per word instead of words per line. Clearly,
those two terms should be reversed.

As long as you're here, you might as well make sure that
NumlLines and NumWords have the values you’d expect. NumLines
should equal 2, and—because of the IsLetter bug you've
uncovered but haven't fixed—NumWords should equal 3. Move
the cursor to NumLines and press Alt-F10 | to inspect a variable. The
Inspector window shows you NumlLines” address, type, and
current value in both decimal and hexadecimal. The value is
indeed equal to 2, so you can move on and have a look at
NumWords. Press Esc to close the Inspector window, move the
cursor forward to NumWords, and press Alt-F10/ again, or use the
Ctrl-1 hot key. NumWords has the expected (incorrect) value of 3, so
you can move on.

Or can you? There’s another problem with this calculation, and it’s
not even on our list. There is no check to see whether the second
term is 0 before the division is performed. If you run the program
from the beginning and enter no data at all (just press Enter when
prompted), the program crashes even after you reverse the
divisor and the dividend.

To confirm this, press Esc to close the Inspector window and type
Alt-R P (or Ctri-F2) to end the current debug session and reload the
program. Then press F9 to run the program from the beginning,
and press Enterat TDDEMOWB's string prompt. The program
terminates with runtime error 200. Press Enter to return to TDW,
and then Esc to get rid of the “Program terminated” message.

Turbo Debugger for Windows User’s Guide

Now that you know what to test for, you should modify the
statement at line 95 to read

if NumLines <> 0 then

AvgWords := NumWords / NumLines
else

AvgWords := 0;

So much for bugs #2 and #2a. As long as you're tinkering with the
Inspector window, try using it to “walk” through a data structure.
Move the cursor up to the declaratior. of LetterTable on line 50.
Place the cursor on the word LetterTable, and press Ctrl-l. You can
see it’s an array of records, 26 elements long. Use the cursor keys
to scroll through each element of the array, and press Enter to step
into one of the array elements. :

Watches

You've still got to squash that column title bug (#3) in ShowResults.
Since you already terminated the program when you tracked the
divide-by-zero error, prepare for another session by closing the
Inspector window, then pressing Alt-R P (to reset the program).
Next, press Alt-F9, type showresults, and press Enter. Now type the
all-too-familiar data ABC DEF GHI and press Enter again. Finally,
type abc def ghi and press Enter twice. TDW should be stopped at
ShowResults. :

ShowResults uses a nested procedure, ShowLetterInfo, to display
the letter tables. Move the cursor down to line 113, press F4, then
press 7 to step into ShowLetterInfo.

There are three for loops. The first one displays the column titles,
and the second and third display frequency counts. Use F7 to step
to the first loop on line 70. Position the cursor over FromLet and
ToLet and use Ctrl-l to check their values. They look okay (the first
equals A, and the second equals M). Press Alt-F5 to view the User
screen and see where things stand. Press any key to return to the
Module window.

When you're stepping through a loop like this, the Watches
window is very handy; position the cursor over ch and press
Ctrl-W. Now use F7 to step through the for loop. As expected, it
steps down to the Write statement on line 71. If you look at the
Watches window, though, you'll see that ch’s value is already M.
(It already executed the entire loop!) There’s an extra semicolon
right after the keyword do, making the for loop do absolutely

Chapter 13, Debugging a standard Pascal application ' 203

nothing 13 times. When control falls through to the Write
statement on line 71, the current value of ch, M, is output and the
program moves on. Removing that extra semicolon eliminates
bug #3.

The end

Whew. That’s all the (known) bugs in this program. Perhaps
you'll find some more as you step through the code. You can fix
the bugs (they are marked with two asterisks (**) for your
convenience) and then recompile; or you can run
TDDEMOW.PAS, the bug-free version of this program, discussed
in Chapter 3.

204 Turbo Debugger for Windows User’s Guide

14

Debugging an ObjectWindows
application

The sample Windows programs in this chapter were written
using the ObjectWindows classes that make Windows program-
ming so much easier than programming using only the Windows
APL

The programs are TDODEMO and TDODEMOB (the B stands for
buggy). TDODEMOB has several bugs in it that you will discover
by working through this chapter.

Before continuing, it might be helpful if you start TDODEMO
from Windows and play with it a bit to get an idea of how it
works. You can either use the Program Manager File | Run
command to start TDODEMO.EXE or add it to a program group
as an icon.

About the program

TDODEMO is an ObjectWindows program that lets you use a
mouse to scribble in various colors on the screen. When you click
the left mouse button and drag the mouse, the program draws on
the screen. You can clear the window by clicking the right mouse
button. TDODEMO has a menu bar that lets you pick any of four
pen colors: Red, Green, Blue, or Black.

Chapter 14, Debugging an ObjectWindows application 205

206

You draw by pressing the mouse button, moving the mouse, and
releasing the mouse button. The program accomplishes this task
easily by using the ObjectWindows library and dynamic virtual
methods. A dynamic virtual method is a virtual method with a
numeric identifier attached to it.

Because Turbo Pascal for Windows defines Windows message
names as numeric constants, you can use a Windows message
name as the identifier of a dynamic method. ObjectWindows can
then call the method whenever the window for which the method
is declared receives a message that matches the method’s
identifier. If there is no method with an identifier matching the
Windows message, ObjectWindows calls the default window
procedure.

For example, in order to create a method that responds to
WM_MOUSEMOVE messages, you can define a method within a
window object that looks like this:

procedure WMMouseMove (var Msg: TMessage); virtual WM MOUSEMOVE;

As you can see, you attach the identifier WM_MOUSEMOVE to
the procedure by using the virtual <identifier> statement
immediately after the procedure declaration.

The type TMessage contains the Windows window procedure
parameters wParam and [Param. These parameters often hold
additional information about the message, such as where the
mouse is positioned.

The next few sections explain how the TDODEMOB program
works. They purposely gloss over the bugs so you can discover
them later. It might be helpful to start Turbo Pascal for Windows
and open TDODEMOB.PAS so you can follow along in the code.

Turbo Debugger for Windows User’s Guide

The Scribble

WiIiNdow 1ype The Scribble window type is defined as follows:
definition ..
ScribbleWindow = object (TWindow)
HandleDC: HDC;
ButtonDown: Boolean; { Left button down flag. }

constructor Init{(aParent: PWindowsObject; aTitle: PChar);
procedure WMLButtonDown(var Msg: TMessage);
virtual WM _LBUTTONDOWN;
procedure WMLButtonUp (var Msg: TMessage);
virtual WM_LBUTTONUP;
procedure WMMouseMove (var Msg: TMessage);
virtual WM MOUSEMOVE;
procedure WMRButtonDown (var Msg: TMessage);
virtual WM RBUTTONDOWN;
end;

The ScribbleWindow type defines a window object that responds to
the following user input:

s Mouse movements
m Left mouse button press and release
m Right mouse button press

There are two instance variables, HandleDC and ButtonDown, that
hold a device class and the state of the mouse button,
respectively.

Init The constructor Init calls the standard constructor TWindow.Init,
which allows the window to behave like any other TWindow, and
also initializes the ButtonDown variable to false.

WMLButtonDown When the user presses the mouse button in the Scribble window
and is about to draw, the window receives a
WM_LBUTTONDOWN message, which causes ObjectWindows
to call WMLButtonDown (since it has an identifier of
WM_LBUTTONDOWN). WMLButtonDown moves the pen to the
current position of the mouse and sets the ButtonDown variable to
indicate that the button is down. There are additional Windows
calls this procedure should be making that will be discussed later.

Chapter 14, Debugging an ObjectWindows application 207

WMMouseMove

WMLButtonUp

WMRButtonDown

Adding color with
CScribbleWindow

208

Once the user starts moving the mouse over the window, the
window begins receiving WM_MOUSEMOVE messages, which
cause ObjectWindows to call the method WMMouseMove. If the
user has pressed the left mouse button, the program draws a line
each time the mouse is moved. If the user hasn’t pressed the
mouse button, nothing at all happens.

When the user finishes scribbling and releases the mouse button,
the window receives a WM_LBUTTONUP message, which in turn
causes ObjectWindows to call WMLButtonUp. The program marks
the ButtonDown variable False and releases the device class
associated with the window.

When the user presses the right button to clear the screen,
ObjectWindows calls the method WMRButtonDown, which calls
the Windows procedure Update Window. Calling this procedure is
supposed to clear the window.

The program now has an object that allows the user to scribble
with a mouse. In order to add color, it would be possible to add
more methods to the ScribbleWindow type, but it might be more
useful to use the OOP inheritance feature and create a new object
from ScribbleWindow instead. The new object is called
CScribbleWindow and is declared as follows:

CScribbleWindow = object (ScribbleWindow)
thePen: HPen;
constructor Init(aParent: PWindowsObject; aTitle: PChar);
destructor Done; virtual;
procedure SelectRedPen(var Msg: TMessage);
virtual cm First + RedMenu;
procedure SelectGreenPen(var Msg: TMessage);
virtual cm First + GreenMenu;
procedure SelectBluePen(var Msg: TMessage) ;
virtual cm First + BlueMenu;
procedure SelectBlackPen (var Msg: TMessage);
virtual cm First + BlackMenu;
procedure WMLButtonDown (var Msg: TMessage);
virtual WMLButtonDown;
procedure GetWindowClass(var AWndClass: TWndClass); virtual;
function GetClassName: PChar; virtual;
end;

Turbo Debugger for Windows User’s Guide

thePen The new object has an instance variable thePen that stores the
current pen color. Using this variable, the CScribble Window
methods set the pen color and then selects it into the device class.

Init The constructor Init first calls its ancestor’s constructor. It then
attaches a menu to the window by setting the window Attr.Menu
field to the menu handle returned by the call to LoadMenu.
LoadMenu loads the menu from the resource file. Finally, the
constructor initializes a pen with the color black.

Done The destructor Done calls its ancestor’s destructor and disposes of
the pen that was created.

The pen-color routines There are four methods that set the pen color by deleting the
current pen and creating a new one of the correct color. These
methods differ only in the color each one sets.

WMLButtonDown Al that's left to do is to select the pen into the device context
before any drawing takes place. Since drawing takes place after
the user presses the left mouse button, it's necessary to redeclare
the dynamic virtual method WMLButtonDown so it gets called
instead of the original in ScribbleWindow.

The new version of WMLButtonDown first calls the parent object’s
WMLButtonDown method, and then selects thePen into the current
device context.

Creating the

application To create an application that uses the Color Scribble window, it’s
necessary to create an object based on the ObjectWindows object
TApplication. The purpose of this object, CScribbleApplication, is to
redeclare the InitMain Window method so that the application can
create a main window with the properties of CScribbleWindow.

Now that you know how the program works, you can begin to
debug it.

Chapter 14, Debugging an ObjectWindows application 209

Debugging the program

210

Finding the first
bug

Eliminating the
alternatives

If you haven’t done so already, start Turbo Pascal for Windows,
load TDODEMOB.PAS, then compile and run it. When you press
the mouse button and move the mouse around, you'll notice that
nothing gets drawn. Obviously, there’s a bug.

Since lines are drawn only in WMMouseMove, that would be a
good place to start investigating. One of three things is probably
happening.

m WMMouseMove isn’t getting called when the mouse is moved.
m There’s a problem with the call to the Windows function LineTo.
m The ButtonDown variable isn’t being set to True.

Load the program into TDW. You can do this most easily from
within Turbo Pascal by loading TDODEMOB.PAS into an Edit
window (which you’ve already done) and choosing Run |
Debugger.

The first thing to test is whether WMMouseMove is getting called.
Move the cursor to ScribbleWindow. WMMouseMove and set a
breakpoint (press F2) at the begin statement. Press F9 to run the
program. (You might have to press F9 several times if the
program keeps exiting to TDW.)

Once the window is up and running, move the mouse over the
window without pressing the left mouse button. TDW stops
execution of the program and returns you to the breakpoint you
set in WMMouseMove. (You might have to press a key to get
Windows to release the WM_MOUSEMOVE messages and make
this work.) WMMouseMove is getting called, so that takes care of
the first possible cause. The bug is either that ButtonDown isn’t
getting set or that there’s a problem with the call to LineTo.

To test both these possibilities, remove the breakpoint from the
WMMouseMove begin statement, then move the cursor down two
lines to the call to the LineTo function and set a breakpoint there.
Next, move the cursor to ScribbleWindow.WMLButtonUp and set
another breakpoint at the begin statement of that routine.

‘When you run the program again, if you move the mouse with

the left button down and execution stops at the call to LineTo,

Turbo Debugger for Windows User's Guide

you'll know that ButtonDown was set properly and the problem is
with the LineTo call; otherwise, the program returns to
WMLButtonUp and the problem is with ButtonDown.

Resume execution of the program by pressing F9. With the cursor
in the window, press the left mouse button and move the mouse.
Since execution stops at LineTo, ButtonDown must hold the correct
value. The problem must be with the call to LineTo.

Debugging LineTo LineTo takes three parameters: a display context (HandleDC), an x
position (Msg.LParamLo), and a y position (Msg.LParamHi).
Windows sends the current mouse position with
WM_MOUSEMOVE messages in the [Param field of the message.
The TMessage variable Msg picks up this parameter in its own
IParam fields, LParamLo, the x value, and LParamHi, the y value.
(TMessage is a type provided by ObjectWindows.) To be valid, the
display context must be a number greater than zero, and the x and
y values must be less than the size of the window in pixels.

Move the cursor to the HandleDC parameter of LineTo and press
Ctrl-I to inspect its value. As you can see, the value is zero,
indicating that the context was never associated. Since you can’t
write to a context that hasn’t been associated, you’ve probably
found the problem. Press £s¢ when you're finished inspecting this
value.

ScribbleWindow. WMLButtonDown is responsible for setting up the
window for drawing, which should include initializing the
display context for the window. If you look at the code for
WMLButtonDown, you see that HandleDC was never associated
with a display context. The following code shows
WMLButtonDown with the context initialization statement added:

procedure ScribbleWindow.WMLButtonDown (var Msg: TMessage);

begin
if not ButtonDown then
begin
ButtonDown := True; { Mark mouse button as being

{ occurs, a line will be drawn.

}
{ pressed so when mouse movement }
}
HandleDC := GetDC (HWindow); {Create display context for drawing.}

MoveTo (HandleDC, Msg.LParamlLo,{ Move drawing point to location }
Msg.LParamii); { where mouse was pressed. }

end;
end;

Chapter 14, Debugging an ObjectWindows application 211

Testing the fix

If you exit TDW before
running and exiting the
application, Windows will
probably start the
application anyway. and
you’ll have to exit it then.

Finding the pen
color bug

Turbo Pascal might prompt

you to save all modules

when you run TDW. You can

212

click Yes to save them.

Setting a window
breakpoint

Remove the breakpoints at the call to LineTo and at
ScribbleWindow. WMLButtonUp. Next, run Color Scribble and exit
it, then exit TDW. When you are back in Turbo Pascal, move to
ScribbleWindow. WMLButtonDown and add the context
initialization statement.

Before compiling the program, make sure debug information will
be written to it by doing the following:

1. Choose Options | Compiler and check Debug Information
2. Choose Options | Linker and check Debug Info In EXE.
3. Choose Options | Save to save your settings.

Now you can recompile the program (choose Compile | Compile
or press Alt-F9) and run it.

When you press the mouse button and move the mouse, black
lines now appear. Try different colors by selecting pen colors from
the menu. Red, green, and blue all work fine; however, when you
try to change the pen color back to black, the pen won’t change
color. It looks like you've found another bug.

The most likely culprit for this bug is the CScribbleWindow method
that creates a black pen, SelectBlackPen. Exit Color Scribble, then
start TDW again and set a breakpoint at the begin statement of
CScribbleWindow.SelectBlackPen. Then run the program and choose
Pen | Black. TDW should have stopped execution at the
breakpoint. Since it didn’t, something else must be wrong.

It appears that SelectBlackPen is never being called. Because this
routine relies on the dynamic virtual method table to get called,
it’s possible that there’s something wrong with the identifier.

When a user chooses a menu item, Windows sends a
WM_COMMAND message to the window that owns the menu.
The wParam parameter of the message contains the identifier of
the menu item that was selected. When an ObjectWindows
window receives a WM_COMMAND message, it scans through
the dynamic method indexes of the window object looking for the
value cm_First+menu_id. SelectBlackPen has an index of
cm_First+BlackMenu, where BlackMenu has the value 104.

Turbo Debugger for Windows User’s Guide

In order to find out what the wParam parameter of the Pen | Black
command message is, you need to tell TDW to stop execution
when it receives a WM_COMMAND message. You can then run
the program, make the menu selection, and then check wParam to
see if it matches the constant BlackMenu.

Interrupting the program with Ctrl-Alt-SysRq

See the next sectionif . Before you can set the program to break on receipt of the
Cit-AltSysRq doesn’t work on - yw\f COMMAND message, you must first interrupt the program
your system. . .

and give control back to TDW. You do that by pressing
Ctrl-Alt-SysRg. TDW returns you to the CPU window, indicating
that Windows kernel code was executing when the program
exited.

Since you aren’t in the TDOEMOB module window, you must use
a roundabout method to set the message breakpoint. Press Alt-F3
to remove the CPU window, then press Ctrl-F4 to bring up the
Evaluate/modify window. Enter the window handle name
CSApp.MainWindow”.hWindow as the expression to evaluate, then
press Enter. A numeric value, the value of the window handle,
appears in the result box. Write this value down, then press Esc to
close the Evaluate/modify window.

Setting the breakpoint Next, choose View | Windows Messages, which displays the
Windows Messages window. The upper left pane shows what
windows you are currently monitoring. The upper right pane
shows what types of messages you are interested in. The bottom
pane contains messages that have been received. Currently, all
three panes are blank because you haven’t added any windows
yet.

Programs wriffen using To add a window, normally you would move the cursor to the
ObjectWindows have no y,pser Jeft pane, then begin typing the name of the window
easily accessed window
procedure, so it's best to use handle. Since the menu is attached to the main window, you want
the window handle instead. to log messages coming into that window. (It’s the only window
in the program, which simplifies things.) The window handle of

the main window is CSApp.Main Window”.hWindow.

However, because the TDODEMOB module window isn’t active,
you must type instead the value of the window handle you
retrieved earlier, then press Alt-H to tell TDW that this value
represents a handle and not a procedure. You'll see the Identify
By radio button move to Handle. Finally, press Enter or select OK
to add the handle value to the pane.

Chapter 14, Debugging an ObjectWindows application 213

214

=

Inspecting wParam

You should only select a window handle after it’s been set in the
program. A handle is set after the window object is initialized. In
this program, the handle is set after the method
CScribbleWindow.SetupWindow has executed.

The next step is to specify the WM_COMMAND message as the
one to break on. Move the cursor to the upper right pane, then
press Alt-F10 to bring up the local menu. Choose Add, type
WM_COMMAND, press Alt-B to push the Break button, then press Enter.
The upper right pane now displays Break on message WM_COMMAND.

If Ctrl-Alt-SysRq doesn’t work

Ctrl-Alt-SysRq doesn’t work on all systems. If it doesn’t work on
yours, you have to terminate Color Scribble, then use Ctrl-F2 to
reload TDODEMOB. When the module window comes up, the
next step is to set a breakpoint in the code so you can run the
program, initialize the window handle, then exit back to TDW
and set the message breakpoint.

To set the breakpoint, in the Module window press Ctrl-PgUp to go
to the beginning of the file. You’ll be setting the breakpoint on the
ScribbleWindow method WMLButtonDown, so press Ctrl-S to bring
up the Search dialog box, type ScribbleWindow.WMLButtonDown, then
press Enter. When the cursor is on the method name, press F2 to
set a breakpoint on the begin statement.

The next step is to press F9 to run the program. When the Color
Scribble window comes up, press the left mouse button to break
and return to TDW. Remove the breakpoint by pressing F2.

Now you're ready to set the message breakpoint. Go back to the
previous section and begin reading at Setting the breakpoint. Since
the Module window is active and CSApp.Main Window”.hWindow
is set, you can enter the handle name instead of its numeric value.
Otherwise, the process is the same.

You can now resume execution of the program by pressing F9.

Choose Pen | Black Pen from the menu. Once you have selected a
black pen, TDW stops execution and displays the CPU Window,
indicating that the program was not executing your code at the
time the break occurred. Close the CPU window by pressing Alt-
F3.

Turbo Debugger for Windows User’s Guide

If necessary, bring up the Windows Messages window again.
Zoom the window to full size so you can see the entire message in
the lower pane. You can see that the window received a
WM_COMMAND message with 204 ($CC) in the wParam
parameter. But the constant BlackMenu is 104, not 204. The reason
the virtual method was not getting called was because the
application was looking for an identifier of cm_First+204, but its
value was actually cm_First+104. If you change BlackMenu to 204,
selecting a black pen should work correctly.

When you’ve made this change, the constant declarations at the
beginning of the program will be as follows:

const

PenWidth = 1; { Width of Scribble line. }
MenulID = 100; { ID of menu in resource file. }
IconID = 100; { ID of icon in resource file. }
RedMenu = 101; { Value of Pen|Red menu. }
GreenMenu = 102; { Value of Pen|Green menu. }
BlueMenu = 103; { Value of Pen|Blue menu. }

{ }

BlackMenu 204;

I

Value of PenjBlack menu.

Testing the fix Run Color Scribble and exit it, then exit TDW. When you are back
in Turbo Pascal, change the BlackMenu constant definition, then
recompile the program and run it.

Now when you draw in the window, you might notice another
problem. If, as you're drawing, you move the mouse off the
window, then back onto the window at another location, you'll
see that the program has drawn a straight line connecting the
point where you left the window and the point where you came
back on.

What the program should do is just stop drawing when you leave
the window and start drawing when you come back. You've
discovered yet another bug.

Finding the off-

screen drawing A place to start looking for this bug is in the window messages
bug the window receives. Get out of the Color Scribble program and
load TDODEMOB.PAS into TDW. Before setting any messages,
you have to initialize the main window so the window handle
will be valid. To do that, set a breakpoint at
CScribbleWindow.WMLButtonDown, then press F9 to run the
program. Next press the left mouse button to return to the TDW

Chapter 14, Debugging an ObjectWindows application 215

216

Logging the window
messages

Discovering the bug

Module window. Once you're back in the Module window,
remove the breakpoint you just set.

Bring up the Windows Messages window with View | Windows
Messages and type CSApp.MainWindow”.hiWindow to enter this
window handle in the left pane of the Windows Messages
window. Press Alt-H to select the Handle button, then press Enter.

Next, move the cursor to the top right pane and press Ctr-A to
bring up the Set Message Filter dialog box. Then set a break on
WM_LBUTTONUP so that TDW regains control after you finish
drawing. You want to look at all the messages that come back, but
setting WM_LBUTTONUP erased the Log All Messages setting.
What you must must do is once again bring up the Set Message
Filter dialog box, this time selecting the Log All Messages class.

Resume execution of TDODEMOB by pressing F9. Begin drawing,
then move the mouse off the client area and back on again at
another place. To reduce the number of messages, just move off
and right back on again, then release the left mouse button so
control returns to TDW.

Before looking at the Window Messages window, make sure to
zoom it to full size (press F5) so you can see more messages. When
you look in the lower pane of the Windows Messages window,
you see a lot of WM_NCHITEST and WM_SETCURSOR
messages. Interspersed among these messages are a
WM_LBUTTONDOWN message, a number of
WM_MOUSEMOVE messages, followed by some
WM_NCMOUSEMOVE messages, followed by more
WM_MOUSEMOVE messages, and a final WM_LBUTTONUP
message. It seems that when the cursor is not over the window, it
doesn’t receive any WM_MOUSEMOVE messages, only
WM_NCMOUSEMOVE messages.

Now it becomes clear what the bug is. The program draws from
the location of the last WM_MOUSEMOVE message to the
location of the current WM_MOUSEMOVE message. When the
mouse exits the client area, the program doesn’t receive any
WM_MOUSEMOVE messages. Therefore, when the mouse
returns to the client area, the last location is where it left the
screen, and the program obediently draws a line from that
location to the current location.

Turbo Debugger for Windows User’s Guide

Fixing the bug One possible solution would be to determine when the mouse is
off the client area so the program can ignore the last mouse
position and begin drawing again when the mouse reenters the
client area. That would require some fancy logic to determine
when the mouse was leaving the client area of the window and
when it moves back over the client area. Fortunately, there is an
easier way.

The Windows function SetCapture does exactly what's needed.
This function tells Windows to send all mouse-related messages
to the specified window until the program calls ReleaseCapture,
thus causing the window to receive WM_MOUSEMOVE
messages instead of the nonclient WM_NCMOUSEMOVE
messages.

If you put SetCapture in ScribbleWindow. WMLButtonDown and
ReleaseCapture in WMLButtonUp, WMMouseMove will actually
draw outside the window when the mouse is scribbling outside
the window, but Windows will clip the drawing for the program.

These changes are shown in the following code listing:

procedure ScribbleWindow.WMLButtonDown (var Msg: TMessage);

begin
if not ButtonDown then
begin
ButtonDown := True; { Mark mouse button as being }
{ pressed so when mouse movement }
{ occurs, a line will be drawn. }
SetCapture (HWindow) ; { Tell windows to send all mouse }

{ messages to window. WMLButtonUp }
{ method will release the capture. }

HandleDC := GetDC(HWindow); {Create display context for drawing.}

MoveTo (HandleDC, Msg.LParamLo, { Move drawing point to location }
Msg.LParamHi); { where mouse was pressed. }

end;
end;

Chapter 14, Debugging an ObjectWindows application 217

Testing the fix

Finding the
erase-screen bug

218

procedure ScribbleWindow.WMLButtonUp(var Msg: TMessage);
begin
if ButtonDown then
begin
ReleaseCapture; { Tell Windows to stop sending all mouse }
{ messages to this window. Allow other }
{ applications to receive mouse messages. }
ReleaseDC (HWindow, handleDC) ; { Release display context created }
{ by WMLButtonDown method. }
ButtonDown := False; { Mark mouse button as not pressed. }
end;
end;

Run Color Scribble and exit it, then exit TDW. When you’re back
in Turbo Pascal, enter the changes to the two routines, then
recompile the program and run it. Now when you draw on the
window, everything works fine, but when you try to erase the
screen by using the right mouse button, nothing happens. You've
found another bug.

Exit Color Scribble, then load TDODEMOB into TDW. To execute
to WMRButtonDown, the procedure where the bug probably is,
press Alt-F9 and type WMRBut tonDown. Scribble a little in the window,
then press the right mouse button. TDW stops the program at the
beginning of WMRButtonDown.

Using the F7 key, step into WMRButtonDown and stop at the call
to UpdateWindow. The only parameter is HWindow. You can
assume that HWindow has been set correctly because other
methods are using it successfully. Since there’s nothing obviously
wrong, one thing you can do is test to see if the WM_PAINT
message that should be sent to the window by the call to
UpdateWindow is actually being received by the window.

By now you probably know how to set a message breakpoint on
WM_PAINT. If not, review the description of how to set a
message breakpoint for WM_COMMAND on page 213.

After setting the message breakpoint, press F9 to run the program.
Since it doesn’t break and return, WM_PAINT is never getting
sent to the window. For some reason, calling UpdateWindow is not
working as expected.

Turbo Debugger for Windows User’s Guide

Analyzing the cause of This bug requires a little understanding of how Windows handles
the bug the UpdateWindow function. When a program calls this function,
Windows checks to see if any part of the window is invalid and
needs repainting. If so, Windows sends a WM_PAINT message to
the window. If not, there’s no reason to waste system resources
with an unnecessary message, so Windows does nothing. But
how does Windows know that the window needs updating?

An application notifies Windows that at least part of the Window
is invalid by calling either InvalidateRect or InvalidateRgn. These
two functions put an update area in the window and notify
Windows that it should update the window with a WM_PAINT
message. However, Windows assigns a low priority to the
WM_PAINT message it sends in response to either of these
function calls, so if you want to ensure that the window gets
updated immediately, you should retain the call to Update Window.

Fixing the bug Adding a call to InvalidateRect in WMRButtonDown will fix the
problem. InvalidateRect takes three parameters, a window handle
that identifies the window, a pointer to a rectangle that marks the
rectangle to be added to the update rectangle, and a Boolean
parameter that specifies if the rectangle should be erased. You can
pass in nil for the pointer to the rectangle, telling Windows that
the entire window should be added to the update rectangle. The
following code listing shows how WMRButtonDown looks with
the new function call added:

procedure ScribbleWindow.WMRButtonDown (var Msqg: TMessage);
begin

InvalidateRect (HWindow, nil, True);

UpdateWindow (HWindow) ;
end;

Testing the fix Run Color Scribble and exit it, then exit TDW. When you are back
in Turbo Pascal, enter the changes to WMRButtonDown, then
recompile the program and run it. Now when you draw on the
window and then press the right mouse button to erase it, the
window does get erased. You've found all the bugs, and the
program now works perfectly.

Chapter 14, Debugging an ObjectWindows application 219

220 Turbo Debugger for Windows User’s Guide

A

Error and informatfion messages

TDW displays error messages and dialog boxes at the current
cursor location. This chapter describes the dialog boxes and error
and information messages TDW generates.

We tell you how to respond to both dialog box and error
messages. All the dialog box messages and error messages
(including the startup fatal error messages) are listed in
alphabetical order, with a description provided for each one.

Dialog box messages

TDW displays a dialog box when you must supply additional
information to complete a command. The title of the dialog box
describes the information that’s needed. The contents may show a
history list (previous responses) that you have given.

You can respond to a dialog box in one of two ways:

m Enter a response and accept it by pressing Enter.

m Press Esc to cancel the dialog box and return to the menu
command that preceded the dialog box.

Some dialog boxes only present a choice between two items (like
Yes/No). You can use Tab to select the choice you want and then
press Enter, or press Y or N directly. Cancel the command by press-
ing Esc.

Appendix A, Error and information messages 221

For a more complete discussion of the keystroke commands to use
when a dialog box is active, refer to Chapter 2.

Here's an alphabetical list of all the messages generated by dialog
boxes:

Already recording, do you want to abort?

" You are already recording a keystroke macro. You can’t start
recording another keystroke macro until you finish the current
one. Press Y to stop recording the macro; N to continue
recording the macro.

Device error — Retry?
An error has occurred while writing to a character device, such
as the printer. This could be caused by the printer being
unplugged, offline, or out of paper. Correct the condition and
then press Y to retry or N to cancel the operation.

Disk error on drive __— Retry?
A hardware error has occurred while accessing the indicated
drive. This may mean you don’t have a floppy disk in the drive
or, in the case of a hard disk, it may indicate an unreadable or
unwriteable portion of the disk. You can press Y to see if a retry
will help; otherwise, press N to cancel the operation.

Edit watch expression
Modify or replace the watch expression. The dialog box is
initialized to the currently highlighted watch expression.

Enter address, count, byte value
Enter the address of the block of memory you want to set to a
particular byte value, then a comma, then the number of bytes
you want to set, then another comma followed by the value to
fill the block with.

Enter address to position to
Enter the address you want to view in your program. You can
enter a function name, a line number, an absolute address, or a
memory pointer expression. See Chapter 9 for more on
entering addresses.

Enter animate delay (10ths of sec)
Specify how fast you want the Animate command to proceed.
The higher the number, the longer between successive steps
during animation.

222 Turbo Debugger for Windows User's Guide

Enter code address to execute to
Enter the address in your program where you want execution
to stop. See Chapter 9 for more information on entering
addresses.

Enter command-line arguments
Enter the command-line arguments for the program you're
debugging.

Enter comment to add to end of log
Enter an arbitrary line of text to add to the messages displayed
by the Log window. You can enter any text you want; it will be
placed in the log exactly as you type it.

Enter destination address for marked block
Enter the segment:offset or segment that you want to move the
marked block to.

Enter expression for conditional breakpoint
Enter an expression that must be true (nonzero) in order for the
breakpoint to be triggered. This expression will be evaluated
each time the breakpoint is encountered as your program
executes. Be careful about any side effects it may have.

Enter expression to watch
Enter a variable name or expression whose value you want to
watch in the Watches window. If you want, you can enter an
expression that does not refer to a memory location, such as
x * y + 4). If the dialog box is initialized from a text pane, you
can accept the entry by pressing Enter, or change it and enter
something else entirely.

Enter inspect start index, range
Enter the index of the first item in the array you want to view,
followed by the number of items you want to view. Separate
the two scalars by a space or a comma (,).

Enter instruction to assemble
Enter an assembler instruction to replace the one at the current
address in the Code pane. The file ASMDEBUG.TDW has a
condenged listing of all assembler keywords and discusses
assembly language in more detail.

Enter log file name
Enter the name of the file you want to write the log to. Until
you issue a Close Log File command, all lines sent to the log
will be written to the file, as well as displayed in the window.
The default file name has the extension .LOG and is the same

Appendix A, Error and information messages 223

224

file name as the program you are debugging. You can accept
this name by pressing Enter, or type a new name instead.

Enter memory address, count
Enter a memory address, followed by an optional comma and
the number of items you want to clear. You can use a symbol
name or a complete expression for the address.

Enter name of file to view
You can use DOS-style wildcards to get a list of file choices, or
you can type a specific file name to load.

Enter new bytes
Enter a byte list that will replace the bytes at the position in the
file marked by the cursor. See Chapter 9 for a complete descrip-
tion of byte lists.

Enter new coprocessor register value
Enter a new value for the currently highlighted numeric
coprocessor register. You can enter a full expression to generate
the new value. The expression will be converted to the correct
floating-point format before being loaded into the register.

Enter new data bytes
Enter a byte list to replace the bytes at the position in the
segment marked by the cursor. See Chapter 9 for a complete
description of byte lists.

Enter new directory
Enter the new drive or directory name that you want to
become the current drive and directory.

Enter new file offset
You are viewing a disk file as hexadecimal data bytes. Enter the
offset from the start of the file where you want to view the data
bytes. The file will be positioned at the line that contains the
offset you specified.

Enter new line number
Enter the line number you want to see in the current module. If
you enter a line number that is past the end of the file, you'll
see the last line in the file. Line numbers start at 1 for the first
line in the file. The current line number that the cursor is on is
shown as the first line of the Module window.

Turbo Debugger for Windows User’s Guide

Enter new selector
Enter the selector value that you want to become current. You
can enter an actual sector hex value, or you can enter a segment
register value, such as CS, DS, or ES.

Enter new value
Enter a new value for the currently highlighted CPU register.
You can enter a full expression to form the new value.

Enter port number
Enter the I/O port number you want to read from; valid port
numbers are from 0 to 65,535.

Enter port number, value to output
Enter the I/O port number you want to write to, and the value
to write; separate the two expressions with a comma. Valid
port numbers are from 0 to 65,535.

Enter program name to load
Enter the name of a program to debug. You can use DOS
wildcards to get a list of file choices, or you can type a specific
file name to load. If you do not supply an extension to the file
name, .EXE will be appended.

Enter read file name
Enter a file name or a wildcard specification for the file you
want to read into memory. If you supply a wildcard specifi-
cation or accept the default *.*, a list of matching files will be
displayed for you to select from.

Enter search bytes
Enter a byte list to search for starting at the position in memory
marked by the cursor. See Chapter 9 for a complete description
of byte lists.

Enter search instruction or bytes
Enter an instruction, as you would for the Assemble local
menu command, or enter a byte list as you would for a Search
command in a Data pane.

Enter search string
Enter a character string to search for. You can use a simple
wildcard matching facility to specify an inexact search string;
for example, use * to match zero or more of any characters, and
? to match any single character.

Appendix A, Error and information messages 225

226

Enter source address, destination, count
Enter the address of the block you want to move, the number
of bytes to move, and the address you want to move them to.
Separate the three expressions with commas.

Enter source directory path
Enter a list of directories, separated by spaces or semicolons (;).
These directories will be searched, in the order that they appear
in this list, for your source files.

Enter symbol table name
Enter the name of a symbol table to load from disk. Usually
these files have an extension of .TDS. You must explicitly
supply the filename extension.

Enter value to fill marked block
Enter a byte value to be filled into the marked block.

Enter variable to inspect
Enter the name of a variable or expression whose contents you
want to examine. If the dialog box is initialized from a text
pane, you can accept the entry by pressing Enter or change it
and enter something else.

Enter write file name
Enter the name of the file you want to write the block of
memory to.

Overwrite __ ?
You have specified a file name to write to that already exists.
You can choose to overwrite the file, replacing its previous
contents, or you can cancel the command and leave the
previous file intact.

Overwrite existing macro on selected key
You have pressed a key to record a macro, and that key already
has a macro assigned to it. If you want to overwrite the existing
macro, press Y; otherwise, press N to cancel the command.

Pick a method name
You have specified a routine name that can refer to more than
one method in an object. Pick the correct one from the list
presented.

Pick a module
Select a module name to view in the Module window. You are
presented with a list of all the modules in your program. If you

Turbo Debugger for Windows User’s Guide

want to view a file that is not a program module, use View |
File.

Pick a name
Pick a name from the list of displayed symbols. You can start to
type a name, and you will be positioned to the first symbol,
starting with what you have typed so far.

Pick a source file
Select a source file from the list displayed; only the source files
that make up the current module are shown.

Pick a window
Pick a window from the list of open window titles.

Pick macro to delete
Pick the key or key combination for the macro you want to
delete. The key will be returned to its original pre-macro
functionality.

Press key to assign macro to
Press the key that you want to assign the macro to. Then, press
the keys to do the command sequence that you want to assign
to the macro key. The command sequence will actually be per-
formed as you type it. To end the macro recording sequence,
press the key you assigned the macro to, or press Alt-.

Program already terminated, Reload?
You have attempted to run or step your program after it has
already terminated. If you choose Y, your program will be
reloaded. If you choose N, your program will not be reloaded,
and your run or step command will not be executed.

Reload program so arguments take effect?
You have just changed the command-line arguments for the
program you're debugging. If you type Y, your program will be
reloaded and set back to the start. You usually want to do this
after changing the arguments because programs written in
many Borland languages only look at their arguments once—
just as the program is loaded. Any subsequent changes to the
program arguments won’t be noticed until the program is
restarted.

Appendix A, Error and information messages 227

Error messages

TDW uses error messages to tell you about things you haven’t
quite expected. Sometimes the command you have issued cannot
be processed. At other times the message warns that things didn’t
go exactly as you wanted.

You can easily tell an error message from a prompt if you turn on
Error Message Beeps in TDINST.

Fatal errors

All fatal errors cause TDW to quit and return to Windows. Some
fatal errors are the result of trying to start TDW from the
command line. A few others occur if something fatal happens
while you are using the debugger. In either case, after having
solved the problem, your only remedy is to restart TDW.

Bad or missing configuration file
The configuration file is either corrupted or not a TDW
configuration file.

Cannot find filename.DLL
This message is generated by TDW for one of two reasons:

m You are attempting to load a program into TDW that
requires one or more DLLs and TDW can’t locate one of the
.DLL files. The DLLs with symbol tables required by your
executable must be in the same directory as the executable

file.

® You are attempting to load TDW and the program can’t find
TDWIN.DLL. Either you have an invalid file name or path
in the DebuggerDLL entry in TDW.INI, or if you don’t have
a TDW.INI, TDW is unable to find TDWIN.DLL in any of
the places Windows knows to look.

Either edit the DebuggerDLL entry in TDW.INI to reflect the
correct path and file name, or if there is no TDW.INI, move
TDWINL.INI to the main Windows directory.

Display adapter not supported by filename
The video driver filename indicated in the VideoDLL entry in
TDW.INI does not support your display adapter. Check the
README file for the correct video DLL and enter its path in
the VideoDLL entry in TDW.INL

228 Turbo Debugger for Windows User’s Guide

Error loading filename
TDW was unable to load the video driver filename. The video
driver you're loading could be an invalid driver file or it could
be corrupted. Make sure the VideoDLL entry in TDW.INI
represents a valid video driver. Check the README file for a
list of valid drivers.

Invalid switch: __
You supplied an invalid option switch on the command line.
Chapter 4 discusses each command-line option in detail.

Not enough memory
TDW ran out of working memory while loading.

Not enough memory to load filename
TDW ran out of working memory while loading the video
driver filename.

Old configuration file
You have attempted to start TDW with a configuration file for a

previous version. You must create new configuration files for
this version of TDW.

Unsupported video adapter
TDW can’t determine which display adapter you're using.
CGA, EGA, VGA, and Hercules monographics are supported
without special video driver support. If your adapter is SVGA
or 8514, use one of the video DLLs listed in the README file.

Video mode not supported by filename
The video mode Windows is using isn’t supported by the video
DLL indicated in the VideoDLL entry in the TDW.INI file.
Either change the Windows video mode or check the README
file for an appropriate video DLL and enter that name in
TDW.INI instead.

Other error
Messages ‘) expected

While evaluating an expression, a right parenthesis was found
to be missing. This happens if a correctly formed expression
starts with a left parenthesis and does not end with a matching
right one. For example,

3% (1+4
should have been

3% (7 +4)

Appendix A, Error and information messages 229

‘" expected
While evaluating a C expression, a question mark (?)
separating the first two expressions of the ternary ?: operator
was encountered; however, no matching : (colon) to separate
the second and third expressions was found. For example,

x<0?46
should have been
x<0?24:6

‘I’ expected
While evaluating an expression, a left bracket ([) starting an
array index expression was encountered without a matching
right bracket (]) to end the index expression. For example,

table[4
should have been
table[4]

This error can also occur when entering an assembler
instruction using the built-in assembler. In this case, a left
bracket was encountered that introduced a base or index
register memory access, and there was no corresponding right
bracket. For example,

mov ax,4[si
should have been
mov ax,4[si]

Already logging to a file
You issued an Open Log File command after having already
issued the same command without an intervening Close Log
File command. If you want to log to a different file, first close
the current log by issuing the Close Log File command.

Ambiguous symbol name
You have entered a symbol name in an expression that does
not uniquely identify a method in a Pascal program, and you
have chosen not to pick the correct symbol from a list. You
must pick the proper symbol from the list presented before
your expression can be evaluated.

230 Turbo Debugger for Windows User’s Guide

Bad or missing configuration file name
You have specified a nonexistent file name with the —¢
command-line option.

Cannot access an inactive scope
You entered an expression or pointed to a variable in a Module
window that is not in an active function. Variables in inactive
functions do not have a defined value, so you can’t use them in
expressions or look at their values.

Cannot be changed
You tried to change a symbol that can’t be changed. The only
symbols that can be changed directly are scalars (Byte, Integer,
Longint, and String), pointers, and strings. If you want to
change a record or array, you must change individual elements
one at a time.

Can’t have more than one segment override
You attempted to assemble an instruction where both operands
have a segment override. Only one operand can have a
segment override. For example,

mov es: [bx],ds:1
should have been one of the following:
mov es: [bx],1

or

mov ax, [1]
mov es: [bx],ax

Can’t set a breakpoint at this location
You tried to set a breakpoint in ROM, nonexistent memory, or
in segment 0. The only way to view a program executing in
ROM is to use the Run | Trace Into command to watch it one
instruction at a time.

Can’t set any more hardware breakpoints
You can’t set another hardware breakpoint without first
deleting one you have already set. Different hardware
debuggers support different numbers and types of hardware
breakpoints.

Can’t set hardware condition on this breakpoint
You've attempted to set a hardware condition on a breakpoint
that isn’t a global breakpoint. Hardware conditions can only be
set on global breakpoints.

Appendix A, Error and information messages 231

232

Can’t set that sort of hardware breakpoint
The hardware device driver that you have installed in your
CONFIG.SYS file can’t do a hardware breakpoint with the
combination of cycle type, address match, and data match that
you have specified.

Constructors and destructors cannot be called
This error message appears only if you are debugging a
program that uses objects. You probably tried to evaluate an
object method that’s either a constructor or a destructor. This is
not allowed.

Count value too large
In the Data pane of the CPU window, you've entered too large
a block length to one of the local menu Block commands. The
block length can’t exceed FFFFFh.

Ctrl-Alt-SysRq interrupt. System crash possible. Continue?
You attempted either to exit TDW or to reload your application
program while the program was suspended as a result of your
having pressed Ctrl-Alt-SysAg. Because Windows kernel code was
executing at the time you suspended the application, exiting
TDW or reloading the application will have unpredictable
results (most likely hanging the system and forcing a reboot).

If possible, set a breakpoint in your code that will cause your
program to exit to TDW, and then run your program again.
When your program encounters the breakpoint and exits to
TDW, you can terminate TDW or reload your program.

Destination too far away
You attempted to assemble a conditional jump instruction
where the target address is too far from the current address.
The target for a conditional jump instruction must be within
-128 and 127 bytes of the instruction itself.

Divide by zero
You entered an expression using the divide (/, div) or modulus
operators (mod, %) that had on its right side an expression that
evaluated to zero. Since the divide and modulus operators do
not have defined values in this case, an error message is issued.

DLL already in list
In the View | Modules dialog box, you tried to add a DLL to the
DLLs & Programs list, but the DLL was already in the list.

Turbo Debugger for Windows User’s Guide

Error opening file
TDW couldn’t open the file that you want to look at in the File
window. The file might not exist or might be in another
directory.

Error opening log file_
The file name you supplied for the Open Log File local menu
command can’t be opened. Either there is not enough room to
create the file, or the disk, directory path, or file name you
specified is invalid. Either make room for the file by deleting
some files from your disk, or supply a correct disk, path, and
file name.

Error reading block into memory
The block you specified could not be read from the file into
memory. You probably specified a byte count that exceeded the
number of bytes in the file.

Error saving configuration
TDW could not write your configuration to disk. Make sure
that there is some free space on your disk.

Error writing block to disk
The block that you specified could not be written to the file that
you specified. You probably specified a count that exceeded the
amount of free file space available on the disk.

Error writing log file ___
An error occurred while writing to the log file collecting the
output from the log window. Your disk is probably full.

Error writing to file
TDW could not write your changes back to the file. The file
might be marked as read-only, or a hard error may have
occurred while writing to disk.

Exception HH
A CPU exception has occurred. The most common exceptions
are 06 (Invalid Opcode) and 13 (0Dh—General Protection Fault,
usually indicating a memory error, possibly caused by a bad
pointer). The exeception numbers correspond to the CPU
exception vector table.

Expression too complex
The expression you supplied is too complicated; you must
supply an expression that has fewer operators and operands.
You can have up to 45 operators and operands in an expres-
sion. Examples of operands are constants and variable names.

Appendix A, Error and information messages 233

Examples of operators are plus (+), assignment (:=), and set
membership (in).

Expression with side effects not permitted
You have entered an expression that modifies a memory
location when it gets evaluated. You can’t enter this type of
expression whenever TDW might need to repeatedly evaluate
an expression, such as when it is in an Inspector window or
Watches window.

Extra input after expression
You entered an expression that was valid, but there was more
text after the valid expression. This sometimes indicates that
you omitted an operator in your expression. For example,

3% 4+52
should have been
3% 4+5/2
Another example,

add ax,4 5
should have been
add ax, 45

You could also have entered a number in the wrong syntax for
the language you are using, for example, 0xF000 instead of
0F000h when you are in assembler mode.

Fatal EMS error
Your EMS manager has reported a fatal error to Turbo
Debugger.

Hardware device driver stuck
A hardware breakpoint is continuously triggering. Perhaps a
hardware breakpoint has been set on a local variable (once a
function returns, the local variables memory address becomes
extremely volatile).

Help file ___ not found
You asked for help, but the disk file that contains the help
screens could not be found. Make sure that the help file is in
the same directory as the debugger program.

234 Turbo Debugger for Windows User’s Guide

lllegal procedure or function call
You have atterhpted to evaluate a function at a time when you
can’t do so. This can happen in one of the following
circumstances:

® You are attempting to call a function that is in an overlay.

® You are attempting to call an Object Pascal method that has
been removed by the Turbo Pascal smart linker.

Immediate operand out of range
You entered an instruction that had a byte-sized operand com-
bined with an immediate operand that is too large to fit in a
byte. For example,

add BYTE PTR[bx], 300

should have been
add WORD PTR{bx],300

Initialization not complete
You have attempted to access a variable in your program
before the data segment has been set up properly by the
compiler’s initialization code. You must let the compiler
initialization code execute to the start of your source code
before you can access most program variables.

Invalid argument list
The expression you entered contains a procedure or function
call that does not have a correctly formed argument list. An
argument list starts with a left parenthesis, has zero or more
comma-separated expressions for arguments, and ends with a
right parenthesis.

Note that TDW requires empty parentheses to call a
parameterless Pascal function or procedure. For example,

myfunc(1,2 3)
should have been
myfunc(1,2,3)

or
myfunc ()

Invalid character constant
The expression you entered contains a badly formed character
constant. A character constant consists of a single quote

Appendix A, Error and information messages 235

236

character () followed by a single character, ending with
another single quote character. For example,

should have been
Ar o= 1gt

Invalid format string
You have entered a format control string after an expression,
but it is not a valid format control string. See Chapter 9 for a
description of format strings.

Invalid function parameter(s)
You have attempted to call a routine in an expression, but you
have not supplied the proper parameters to the call.

Invalid instruction
You entered an instruction to assemble that had a valid instruc-
tion mnemonic, but the operand you supplied is not allowed.
This usually happens if you attempt to assemble a POP CS
instruction. -

Invalid instruction mnemonic
When entering an instruction to be assembled, you failed to
supply an instruction mnemonic. An instruction consists of an
instruction mnemonic followed by optional arguments. For
example,

AX, 123
should have been
MOV ax, 123

Invalid number entered
In a File window or a Module window, you typed an invalid
number to go to (using the Goto command). Numbers must be
greater than zero and in decimal format.

Invalid operand(s)
The instruction you're trying to assemble has one or more
operands that aren’t allowed. For example, a MOV instruction
cannot have two operands that reference memory, and some
instructions only work on word-sized operands. For example,
POP al '
should have been
POP ax

Turbo Debugger for Windows User’s Guide

Invalid operator/data combination
You've entered an expression where an operator has been
given an operand that can’t have the selected operation
performed on it. For example, you attempt to multiply a
constant by the address of a function in your program.

Invalid pass count entered
You have entered a breakpoint pass count that is not between 1
and 65,535. You can't set a pass count of 0. While your code is
running, a pass count of 1 means that the breakpoint is eligible
to be triggered the first time it is encountered.

Invalid register
You entered an invalid floating-point register as part of an
instruction being assembled. A floating-point register consists
of the letters ST, optionally followed by a number between 0
and 7 within parentheses; for example, ST or ST(4).

Invalid register combination in address expression
When entering an instruction to assemble, you supplied an
operand that did not contain one of the permitted
combinations of base and index registers. An address
expression can contain a base register, an index register, or one
of each. The base registers are BX and BP, and the index
registers are Sl and DI. Here are the valid address register

combinations:
BX BX+SI
BP BP+SI
DI BX+4DI
SI BP+DI

Invalid register in address expression
You entered an instruction to assemble that tried to use an
invalid register as part of a memory address expression
between brackets ([]). You can only use the BX, BP, SI, and DI
registers in address expressions.

Invalid symbol in operand
When entering an instruction to assemble, you started an
operand with a character that can never be used to start an
operand: for example, the colon (:).

Invalid typecast
You entered an expression that contained an incorrectly
formed typecast. A correct Pascal typecast starts with a known

Appendix A, Error and information messages 237

238

data type, then a left parenthesis, then an expression, then ends
with a right parenthesis. For example,

Longint (p)
or
Word (p")

Invalid value entered
When prompted to enter a memory address, you supplied a
floating-point value instead of an integer value.

Keyword not a symbol (assembler only)
The expression you entered contains a keyword where a
variable name was expected. You can only use keywords as
part of typecast operations, with the exception of the sizeof
special operator. For example,

floatval = char charval
should have been

floatval = char (charval)

Left side not a record, structure, or union
You entered an expression that used the Pascal record field
qualifier (.). This symbol, however, was not preceded by a
record name, nor was it preceded by a pointer to a record.

No coprocessor or emulator installed
You tried to create a Numeric Processor window using the
View | Numeric Processor command, but there is no numeric
processor chip installed on your system, and the program
you're debugging either doesn’t use the software emulator or
the emulator has not been initialized.

No hardware debugging available
You have tried to set a breakpoint that requires hardware
debugging support, but you don’t have a hardware debugging
device driver installed. You can also get this error if your hard-
ware debugging device driver does not find the hardware it
needs.

No help for this context
You pressed F1 to get help, but TDW could not find a relevant
help screen. Please report this to Borland technical support.

Turbo Debugger for Windows User’s Guide

No modules have line number information
You have used the View | Module command, but TDW can’t
find any modules with enough debug information in them to
let you look at any source modules. This message usually
happens when you're debugging a program without a symbol
table. See the “Program has no symbol table” error message
entry on page 241 for more information on symbol tables.

No previous search expression
You attempted to perform a Next command from the local
menu of a text pane, but you had not previously issued a
Search command to specify what to search for. You can only
use Next after issuing a Search command in a pane.

No program loaded
You attempted to issue a command that requires a program to
be loaded. There are many commands that can only be issued
when a program is loaded. For example, none of the com-
mands in the Run menu can be performed without having a
program loaded. Use the File | Open command to load a pro-
gram before issuing these commands.

No type information for this symbol
You entered an expression that contains a program variable
name without debug information attached to it. This can
happen when the variable is in a module compiled without the
correct debug information being generated. You can supply
type information by preceding the variable name with a
typecast expression to indicate its data type.

Not a function name
You entered an expression that contains a call to a routine, but
the name preceding the left parenthesis introducing the call is
not the name of a routine. Any time a parenthesis immediately
follows a name, the expression parser presumes that you
intend it to be a call to a routine.

Not a record, structure, or union member
You entered an expression that used the Pascal record field
qualifier (.). This symbol, however, was not preceded by a
record name, nor was it preceded by a pointer to a record.

Not enough memory for selected operation
You issued a command that needed to create a window, but
there is not enough memory left for the new window. You
must first remove or reduce the size of some of your windows
before you can reissue the command.

Appendix A, Error and information messages 239

240

Not enough memory to load program
Your program’s symbol table has been successfully loaded into
memory, but there is not enough memory left to load your pro-
gram.

Not enough memory to load symbol table
There is not enough room to load your program’s symbol table
into memory. The symbol table contains the information that
TDW uses when showing you your source code and program
variables. If you have any resident utilities consuming
memory, you might want to remove them and then restart
TDW. You can also try making the symbol table smaller by
having the compiler only generate debug information for those
modules you are interested in debugging.

When this message is issued, you must free enough memory to
load both your program and its symbol table. If you're
debugging a TSR program that’s already loaded, then you must
start Turbo Debugger using the -sm command-line option to
reserve memory for the program’s symbol table.

Only one operand size allowed
You entered an instruction to assemble that had more than one
size indicator. Once you have set the size of an operand, you
can’t change it. For example,

mov WORD PTR BYTE PTR[bx],1
should have been
mov BYTE PTR[bx],1

Operand must be memory location
You entered an expression that contained a subexpression that
should have referenced a memory location but did not. An
example of something that must reference memory is the
assignment operator.

Operand size unknown
You entered an instruction to assemble, but did not specify the
size of the operand.'Some instructions that can act on bytes or
words require you to specify which size to use if it cannot be
deduced from the operands. For example,

add [bx],1
should have been

add BYTE PTR[bx],1

Turbo Debugger for Windows User’s Guide

Path not found
You entered a drive and directory combination that does not
exist. Check that you have specified the correct drive and that
the directory path is spelled correctly.

Path or file not found
You specified a nonexistent or invalid file name or path when
prompted for a file name to load. If you do not know the exact
name of the file you want to load, you can pick the file name
from a list by pressing Enter when the dialog box first appears.
The names in the list that end with a backslash (\) are
directories, letting you move up and down the directory tree
through the lists.

Program has invalid symbol table
The symbol table attached to the end of your program has
become corrupted. Re-create an .EXE file and reload it.

Program has no objects or classes
You've attempted to open a View | Hierarchy window on a
program that isn’t object-oriented.

Program has no symbol table

, ‘ The program you want to debug has been successfully loaded,
See page 59 for information but it doesn’t contain any debug symbol information. You'll
on adding a symbol table to . . .
a program. still be able to step through the program using a CPU window
to examine raw data, but you won’t be able to refer to any code
or data by name.

Program linked with wrong linker version
, ' You are attempting to debug a program with out-of-date debug
See pagegg g c(’; é’;’nf ‘;’ 'gggsg information. Relink your program using the latest version of
information to a program. the linker or recompile it with the latest version of the compiler.

Program not found :
The program name you specified does not exist. Either supply
the correct name or pick the program name from the file list.

Register cannot be used with this operator

You have entered an instruction to assemble that attempts to
use 3 base or index register as a negative displacement. You
can only use base and index registers as positive offsets. For
example,

INC WORD PTR[12-BX]
should have been

INC WORD PTR[12+BX]

Appendix A, Error and information messages 241

Register or displacement expected
You have entered an instruction to assemble that has a badly

formed expression between brackets ([). You can only put
register names or constant displacement values between the
brackets that form a base-indexed operand.

Run out of space for keystroke macros
The macro you are recording has run out of space. You can

record up to 256 keystrokes for all macros.

Search expression not found
The text or bytes that you specified could not be found. The

search starts at the current location in the file, as indicated by
the cursor, and proceeds forward. If you want to search the
entire file, press Ctrl-PgUp before issuing the search command.

Source file ___ not found
TDW can'’t find the source file for the module you want to

examine. Before issuing this message, it has looked in several
places:
m where the compiler found it
min the directories specified by the —sd command-line option
and the Options | Path for Source command

m in the current directory
m in the directory where TDW found the program you're de-

bugging
You should add the directory that contains the source file to
the directory search list by choosing Options | Path for Source.

Symbol not found
You entered an expression that contains an invalid variable

name. You might have mistyped the variable name, or it might
be in some procedure or function other than the active one or

out of scope in a different module.

Symbol table file not found
The symbol table file that you have specified does not exist.

You can specify either a .TDS or .EXE file for the symbol file.

Syntax error
You entered an expression in the wrong format. This is a

general error message when a more specific message is not

applicable.

242 Turbo Debugger for Windows User’s Guide

Too many files match wildcard mask
You specified a wildcard file mask that included more than
100 files. Only the first 100 file names will be displayed.

Unexpected end of line
While evaluating an expression, the end of your expression
was encountered before a valid expression was recognized.

For example,
99 - 22 *

should have been
99 - 22 % 4

And this example,
SUB AX,

should have been
SUB AX, 4

Unknown character
You have entered an expression that contains a character that
can never be used in an expression, such as a reverse single
quote (‘).

Unknown record, structure, or union name
You have entered an expression that contains a typecast with
an unknown record or enum name. (Note that assembler
structures have their own name space different from
variables.)

Unknown symbol
You entered an expression that contained an invalid local
variable name. Either the module name is invalid, or the local
symbol name or line number is incorrect.

Unterminated string
You entered a string that did not end with a closing quote (’).
If you want to enter a string that contains quote characters in
Pascal, it must contain additional quote characters (’).

Value must be between nn and nn
You have entered an invalid numeric value for an editor
setting (such as the tab width) or printer setting (such as the
number of lines per page). The error message will tell you the
allowed range of numbers.

Appendix A, Error and information messages 243

244

Value out of range
You have entered a value for a Pascal variable that is outside
the range of allowed values.

Variable not available
Your program’s code has been optimized, and the variable
you're looking for can no longer be accessed.

Video mode not available
You have attempted to switch to 43/50-line mode, but your
display adapter does not support this mode; you can only use
43/50-line mode on an EGA or VGA.

Turbo Debugger for Windows User’s Guide

77
in Variables window 75
in Watches window 96
-? option (help) 64
= (System) menu
activating 19
80x87 coprocessors See numeric coprocessors
80x86 processors
debugging, breakpoints 177
type, in CPU window 779
80386 processor
debugging, Windows applications 12
hardware debugging registers 12
/$D- option (TPCW) 60
/$L- option (TPCW) 60

A

accuracy testing 196
action
breakpoints 108
sets of and breakpoints 119
active window 32
returning to 20
activity indicators 471
adapters See graphics adapters; video adapters
Add command
breakpoints 710, 120
window messages
message classes 163
window object 161
window selection 159
Add Comment command (log) 124, 125
Add Watch command 95
Add Window dialog box
ObjectWindows gpplication 162
standard Windows application 159
addresses 137
instructions, disassembled 780

Index

memory See memory, addresses
running to specified 137
problems with 83
scope override for, C and C++ 137
Alt-key shortcuts See hot keys
Always option
breakpoints condition 7716
display swapping 68
ancestor and descendant relationships 157
ancestor types 155
Animate command 84, 222
Another command 371
arguments 4, See also parameters
calling function 27
command-line options 61, 227
changing 90
setting 85, 90
list 235
Arguments command 90
arrays
changing 231
indexes 223
inspecting 22, 31, See also Inspector windows
subranges of 700, 103, 104
tutorial 53
quoted character strings and 147
watching 96, See also Watches window
arrow keys See also keys
history lists and 25
menu commands and 19
radio buttons and 21
resizing windows with 36
ASCII
files
display option for 134
searching 133
text, viewing files as 132
ASMDEBUG.TDW file 10

245

assembler See also Inline assembler

built-in 178, See also Code pane
problems with 230

code 30
tracking 31

testing for 196
Break option (breakpoints) 117
Breakpoint Detail pane 170
Breakpoint List pane 110
breakpoints 27, 107-117, See also Breakpoints

data, formatting 183
inline, keywords

problems with 238
instructions See also instructions

back tracing and unexpected side effects 87

breakpoints and 71717
executing single 82, 83
execution history and 87
multiple, treated as single 83
recording 87
watching 29, See also CPU window
memory dumps 183, 184
mode, starting TDW in 64
registers See CPU, registers
stack See Stack window
symbols 181
Assembler option (language convention) 136
assembly code, debugging 10
assignment operators See also operators
language-specific 76, 97
Turbo Pascal 744
At command (breakpoints) 109, 120

Back Trace command 84
backward trace 17, 87, See also reversing
program execution
assembler instructions 87
interrupts and 86
binary operators 144, See also operators
bits 178
blinking cursor 35
blocks
memory See memory, blocks
moving 226
reading from, problems with 233
writing to files, problems with 233
Borland, contacting 5
Both option (integer display) 69
bottom line See also reference line
boundary errors 189
Pascal-specific 194

246

window
actions 108, 117
sets of 119
At command 709
Boolean 117
Changed Memory 121
Changed Memory Global command 709
condition sets 118
conditional 122
conditions for triggering 107, 116
adding actions 115
customizing 116, 120
defined 107
Delete All command 7109
disabling/enabling 114
Expression True Global command 709
Get Info message about 80
global 114, 121
memory variables and 122
where occurred in program 81
groups
Add command 112
defined 712
delete 113
disable 114, 118
enable 113, 118
Group ID text box 114
List dialog box 112
hardware 117, 123
hardware-assisted
device drivers and 122, 232
problems with 231, 232, 238
Hardware Breakpoint command 709
inspecting 1711
local variables 123
location 107
logging values 123
pass counts 108, 122, See pass counts
setting 120
reloading programs and 89
removing 108, 111
running programs to 52

Turbo Debugger for Windows User’s Guide

saving 115
scope 122
setting 108
in module files 123
problems with 231
tutorial 57
simple 120
Toggle command 709
viewing 110
window messages
Get Info message about 80
setting 164
TDODEMO 212
window handle, logging with 213
Breakpoints command 170
Breakpoints menu 709
Breakpoints window 27, 110-111
local menu 710
opening 110
panes 110
bugs 15-16, 185, 187-189
accuracy testing 196
boundary errors 189
Pascal-specific 194
testing for 196
finding 16, 85, 185-186
backward trace and 84
demo programs
TDDEMOWRB 198-204
TDODEMOB 205-219
execution history and 86
history lists and 124
interrupting programs and 88
in subroutines 188
TDODEMO
SelectBlackPen method 2712
WMLButtonDown method 215
WMMouseMove method 210
WMRButtonDown method 278
fixing
TDODEMOB
line drawing 2711
off-screen drawing 217
pen color 215
screen clearing 219
SelectBlackPen method 2715
WMLButtonDown method 2171, 217

Index

WMRButtonDown method 2719
incremental testing 187
Pascal-specific 189-196
range errors 195
returning information on 79

built-in assembler 178, See also assembler,
built-in
built-in syntax checker 16
bullets (e)
Result box and 93
Watches window and 96
buttons 21, 39, See also dialog boxes
Help 21)
radio See radio buttons
byte lists
entering 133, 142
language syntax 743
bytes 178, 181
formatting 783
hexadecimal, viewing files as 132
memory blocks
setting, responding to prompt 222
raw data 224
examining 98
searching for 242
watching 29

C

—c option (load configuration file) 64
problems with 231
C expressions, problems with 230
calculator 94
calculator, using Watches window as 135
capturing WM_MOUSEMOVE messages 217
case sensitivity, overriding 65
casting See type conversion
central processing unit See CPU
CGA See graphics adapters; video adapters
Change command
Global pane local menu 76
Inspector window local menu 104
Object Data Field pane local menu 155
Static pane local menu 76
Watches window local menu 97
Change dialog box
global symbols and 76
local symbols and 76

247

Changed Memory Global command
(breakpoints) 109
Changed Memory option (breakpoints) 776
character constants 235
character devices, problems with 222
character strings
null-terminated 702
inspecting 99
quoted 133
arrays as 147
problems with 243
searching for
File window, in 133
Module window, in 130
responding to prompt 225
searching for next
File window, in 133
Module window, in 130
Turbo Pascal 744
characters
control (Pascal programs) 144
display (ASCII vs. hex) 134
invalid 243
problems with scalar variables and 99
raw 147 ’
value of 99
check boxes 21, See also dialog boxes
Breakpoint Disabled 1714
Save Configuration 70
classes, nested, scope of 139
clearing a window
TDODEMO program 219
Clipboard 37
local menu commands 40
tips for using 40
watching expressions 40
clipping items from windows 37
close box 34
Close command 317, 36, 105
Close Log File command 125
code See-also specific language application
breakpoints and 111, 114, 122
checking onscreen 371
current segment See programs, current
location
debugging See debugging
disassembled, problems with 75

248

editing 127-128
exit, returned to Windows 81
inspecting 86, See also Inspector windows
splicing in (breakpoints) 117
stepping through 83, See also Step Over
command
tracing into 82, See also Trace Into command
execution history and 85
viewing 178
execution history and 30
in multiple files 130, 134
watching See also Watches window
in slow motion 84
Code pane '
current program location 180
disassembler and 780
immediate operands and 181
instruction addresses 180
color graphics adapters See graphics adapters
color monitors See monitors
.COM files, debugging 10
command-line options See also specific switch
arguments 227
changing 90
setting 85, 90
disabling 63
entering 61
setting in TPW.INI 61
summary of 71
syntax 60
help with 64
TDW utilities 71
commands 22, See also specific menu command
assigning as macros 67
choosing 19
active windows and 32
dialog boxes and 221
escaping out of 20
hot keys and menu 20
local menu 24
summary of
onscreen 41, 42
comments
adding to history lists 124, 125
adding to log 223
compiler directives, files and 127

Turbo Debugger for Windows User’s Guide

compiling demo programs
TDODEMO 211
complex data objects 96
complex data types 97
compound data objects 95
inspecting 97
condition sets (breakpoints) 118
conditional breakpoints See breakpoints
conditions See also breakpoints
controlling (breakpoints) 122
configuration files 66
changing default name 70
directory paths 65
loading 64
overriding 63, 66
problems with 228, 229, 231
saving
options to 69
problems with 233
TDCONFIG.TDW 37, 64, 66
constants
Inspector windows and 98
problems with 235
Turbo Assembler 145
Turbo Pascal 143
constructor methods 94
constructors
problems with 232
context-sensitivity 21, 22
help 41-43
continuous trace 84
control-key shortcuts See also hot keys; keys
conversion See type conversion
coprocessors See numeric coprocessors
copying and pasting 37
CPU See also CPU window
flags
state of 1871
viewing 29, 184
memory, displaying 1871
memory dump 183
registers
compound data types and 95
optimization with 54
viewing 29, 184
state, examining 29, 178
CPU command 98, 178

Index

CPU window 29
cursor in 179
disassembled code and 75
opening 178
automatic 29
panes 29
processor type in 179
program execution and 82-87
Create command 67
CScribbleApplication object (TDODEMO) 209
CScribbleWindow object (TDODEMO) 208
Ctrl-Alt-SysRq (program interrupt key) 88
Program Reset command, and 88, 215
TDDEBUG.386, need for 11
current activity, help with 471
current code segment See programs, current
location
cursor 35
CPU window 179
running programs to 82
tutorial 50
cursor-movement keys See keys
customer assistance 5
customizing TDW 66, 67

D

data 92-95, See also Data pane
accessing 136
bashing, global breakpoints and 721
formatting 93
input 197
inspecting 97-105, See aiso Inspector
windows
in recursive procedures 78
manipulating 29
modifying 56
objects
complex 96
compound 95, 97
inspecting 92, 184
pointing at 95
watching 96
raw
displaying 783
examining 98
inspecting 184
viewing 29, 184, 224

249

structures, inspecting 22, 155
testing, invalid input and 197
truncated 93
types 91
complex 91
converting See type conversion
inspecting 31, 98-103
problems with 75, 93, 146
tracking 121
variables and 239
values 196
setting breakpoints for 121
viewing 178
in recursive routines 75
incorrect values shown 81
watching See Watches window
Data menu 92-95
Data pane
memory addresses in 183
Debug Information command 59
DebuggerDLL, TDW.INI entry 3
debugging 15-19, 177, See also programs,
debugging
assembly code 10
.COM files 10
continuous trace 84
control 73-90
memory use and 79
returning to TDW 82, 88
defined 15
demo programs See demo programs
dynamic link libraries 169
startup code 173
features 1, 18
message logs and 28
multi-language programs 10
multiple components 55
object-oriented programs See object-oriented
programs, debugging
ObjectWindows programs 205
procedures
recursive 78
required files 3
restrictions 16
routines 127, 188
recursive 75
sessions 73

280

preparing programs for 59-70, 197
starting 89
simple programs 187
source files and 3
steps 15
strategies 199
terminology 4
tips
DLL Startup buttons 172
Load Symbols reset 172
window messages 165
tools 17
tutorial 45
Help with 47
TDDEMOWB 198-204
TDODEMOB 210-219
variables 188
uninitialized 188
Windows programs
features list 157
user interface 1, 157
decimal numbers 69 _
integers displayed as 147
Decimal option (integer display) 69
default settings .
overriding 66, See also TDWINST
restoring 70
Delete All command
Breakpoints window local menu 777
Macros menu 68
Watches window local menu 97

window messages
message classes 165
Windows Messages window
window proc 162
Delete All command (breakpoints) 109
demo programs 45
compiling and linking
TDODEMO 211
Help with 47
reloading 47
source file 45
starting 200
TDDEMOW 46
TDODEMO 205
TDDEMOW tutorial 50
TDDEMOWRB 198-204

Turbo Debugger for Windows User's Guide

TDODEMOB 210-219
Descend command
Inspector window local menu 105
Object Data Field pane local menu 155
descendant relationships 150, 151
destructor methods 94
destructors, problems with 232
device drivers
breakpoints and 122
problems with 238
dialog boxes 20-21
Add Group 112
bottom line in 43
Breakpoint Options 110, 1714
Change 76
closing 70
commands and 221
Conditions and Actions (breakpoints) 115
Display Options 68
Edit Breakpoint Groups 7112
escaping out of 221
Evaluate/Modify 93, 135, 201
Expression Language 136
Hardware Breakpoint Options 117
icons 19
Load Program 89
messages 221-227
moving around in 271
responding to 221
Save Options 70
search 130, 133
Watch 76
directories
paths
for source 3
multiple 65
problems with 241
setting 65, 69, 226
starting directory, changing 65
disassembled instructions 7180
disassembler 180
disk drives, accessing, problems with 222
disks
distribution 9
files on See files, disk
writing to, problems with 233

Index

display
formats
expressions 146
integers 69
modes
defaults, setting 68
problems with 244
options, saving 37
output 68
problems with 36
swapping 68
Display As command
Data pane local menu 783
File window local menu 734
Display Options command 68
Display Options dialog box 68
Display Swapping radio buttons 68
Display Windows Info command 126, 166
distribution disks 9
copying 9
DLL See dynamic link libraries
—do option (run on secondary display) 64
DOS
versions 79
wildcards, choosing files and 137
drawing
cursor off-screen, with, TDODEMOB 217
drives See disk drives
-ds option (swap screens) 64
Dump Pane to Log command 124
Dump window 29, 184
duplicate windows, opening 31
Dynamic Link Libraries
expressions, accessing 141
scope considerations 741
dynamic link libraries
debugging 169
startup code 173
reverse execution, and 84
dynamic virtual methods 205

Edit command, Watches window local menu 97

editing
expressions 97
history lists 25

EGA See also graphics adapters; video adapters
line display 69
EMS
execution history and 86
fatal error 234
information about 79
end of lines, problems with 243
Enhanced Graphics Adapters See EGA
Enter Program Name to Load dialog box 89
Erase Log command
Log window local menu 126
Windows Messages window 165
Erase Log File command 125
erasing a window
TDODEMO program 219
errors
boundary See boundary errors
Exception 13 81
fatal 228
messages 228-244
Evaluate input box 93
Evaluate/Modify command 92-94, 135
Evaluate/Modify dialog box 93, 135
using 201
Exception 13 error message 81
exception codes 81
13 81
exception error message 233
executable program files See files
Execute option (breakpoints) 777
Execute To command 83
execution history 85
backward trace and 86
deleting 86
losing 87
recovering 87
Execution History command 86
Execution History window 30
opening 86
exit code, returned to Windows 81
exiting, TDW 70
exiting, TDW, tutorial 47
expanded memory specification See EMS
Expression Language dialog box 136

Expression True Global command (breakpoints)

109
Expression True option (breakpoints) 117

262

expressions 135-147
Clipboard, watching in 40
complex 92
editing 97
entering, problems with

character constants 235
inactive scope 231
invalid argument list 235
invalid characters 243
invalid variables 242, 243
memory areas 240
no record name for field 238, 239
not routine name 239
operators 232, 234, 237
too comblex 233
evaluating 92-94, 201
implied scope 142
language conventions 136
problems with
end of line 243
no right bracket 230
no right parenthesis 229
scope 142
side effects 234
procedures in 144
formatting 146
problems with 236
inspecting 31, 92, 105, 226, See also Inspector
windows
language options 136
pointing at 95
return values 96, 135
scope override
Pascal 140
syntax
Turbo Assembler 145-146
Turbo Pascal 143-145
undefined 96
updating 97
watching 95, 223, See also Watches window
format specifiers and 93

F

fatal errors 228
features, version 3.1 2
File command
File window local menu 734

Turbo Debugger for Windows User’s Guide

Module window local menu 730
View menu 131
File window 28
local menu 732
opening 130
FILELIST.DOC file 9
files See also File menu; File window
ASMDEBUG.TDW 10
compiler directives and 127
configuration See configuration files
demo program 45
disk 28, 127, 131
history lists and 125
executable program 127, 225
required for debugging 3
FILELIST.DOC 9
HELPME!.TDW 710
include 127
INSTALL.EXE 9
list boxes and 26
loading See files, opening
log 223
problems with 230, 233
modifying, byte lists and 142
moving to specific line number in 730, 132
multiple, viewing 130, 134
opening 89, 131, 224
problems with 233
nonexistent drive and directory 241
nonexistent or invalid name 241
wildcard masks and 243
overriding 136
overwriting 226
program module
loading a new module 729
setting breakpoints in other 123
viewing 127
README 10
searching through
File window, in 133
Module window, in 130
source See source files
TDCONFIG.TDW 37, 64, 66
TDDEBUG.386 11
TDDEMOW.PAS 45
TDDEMOWRB.PAS 7198
TDODEMO.PAS 205

Index

TDODEMOB.PAS 205
TDWINI 3
TDWIN.DLL 3
text 132
TPW.INI 61
tracking 31
UTILS.TDW 10
viewing 28, 128, 134
as ASCII text 132
as hex data 132, 134
offset address 224
multiple 130, 134
source code 128
writing to, problems with 233
flags
CPU See CPU, flags
Flags pane 181
floating point
constants
Turbo Assembler 145
Turbo Pascal 143
numbers
formatting 147, 183
problems with 29
registers 224
problems with 237
format specifiers 93, 147
problems with
invalid string 236
Full History command 87
function keys 42, See also hot keys; keys
Function Return command 95
functions See also procedures
calling, problems with 235
inspecting See also Inspector windows
variables and inactive 231
Windows See Microsoft Windows, functions

G

Get Info command 79

gh2fp (type-cast symbol) 175

global breakpoints See breakpoints, global
where occurred in program 81

global memory, Windows
information about 79
listing 166

global menus 19, See also menus

253

local vs. 23
Global pane 75
local menu 75
global symbols, disassembler and 180
global variables See also variables
changing 76
debugging in subroutines 188

inspecting 75, See also Inspector windows

same name as local 75
viewing 28, 75
in stack 27

Watches window, adding to 76
GlobalAlloc function 166
GlobalLock function 167
GlobalPageLock function 167
Go to Cursor command 82
Goto command

File window local menu 132

Module window local menu 131
graphics adapters See also hardware

EGA 69

problems with 244

supported 228, 229

TDW requirements 2

unsupported driver 228

VGA 69
graphics modes See display, modes
Group command (breakpoints) 112

H
~h option (help) 64
handle
memory
casting to far pointer 175
listing global memory, and 7166
window
messages
and 162
window messages, and 159
hardware
adapters See graphics adapters; video
adapters
breakpoints 123
memory variables and 122
debugging 12
problems with 2317, 238
setting breakpoints 109

254

TDDEBUG.386 file required for 71
primary and secondary displays 64
requirements 2 '
Hardware Breakpoint command 709
Hardware option (breakpoints) 117
HDWDEBUG.TD 117
heap

allocation 189

global, Windows 166

local, Windows 168
help 41-43

accessing 41

problems with 234, 238
additional topics for 42
command-line options 64

TDW utilities 71
context-sensitive 41-43
current activity 41
demo programs 47
dialog boxes 21

Help button 21
Help Index 42
Help menu 42
Help on Help command 42
Help screen
activating 42
highlighted keywords in 42
HELPME!TDW 10
Hex display option (files) 134
Hex option (integer display) 69
hexadecimal bytes 132, 133
viewing
data as 183
files as 132, 134
hexadecimal constants
Turbo Pascal 143
hexadecimal constants, Turbo Assembler 145
hexadecimal numbers 69
integers displayed as 147
hierarchies, object type 149, See also Hierarchy
window
Hierarchy command
Object Data Field pane local menu 153, 156
Object Methods pane local menu 153
View menu 149
Hierarchy Tree pane 150, 151
local menu 157

Turbo Debugger for Windows User’s Guide

Hierarchy window 7149
opening 149
panes 150-151
highlight bar in windows 35
history lists 24-25, See also execution history
breakpoints 124
editing 25
logging to 125
hot keys 20, See also keys
Alt = (Create Macros) 67
Alt-B (Breakpoints) 109
Alt-F4 (Back Trace) 84
Alt-F3 (Close) 36
Alt-F9 (Execute To) 83
Alt-F7 (Instruction Trace) 84
Alt-F6 (Undo Close) 36
Alt-F5 (User screen) 31
Ctrl-F2 (Program Reset) 85
Ctrl-F5 (Size/Move) 36
Ctrl-I (Inspect) 22
Ctrl-N (text entry) 25
dialog boxes 21
F4 (Go to Cursor) 82
F3 (Module window) 28
F6 (Next Window) 34
F9 (Run) 82
F8 (Step Over) 83
F7 (Trace Into) 82
F8 (Until Return) 83
F5 (Zoom) 36
help with 43
local menus 23, 24, 43
macros as 26, 67
Tab/Shift-Tab (Next Pane) 34

IBM display character set 147
Iconize/Restore command 36
icons

dialog boxes 19

menu 19

reducing windows to 33, 36

zoom 33
identifiers, referencing in other modules 137
include files 127
incremental matching 26
Index command 42

Index

indicators, activity 47
NI files 61
Inline assembler See also assembler
instructions; instructions See also
inline assembler
arrays, inspecting 102
constants 145
data, inspecting 7107-703
expressions 145-146
INCLUDE compiler directive 127
keywords, problems with 238
operators, precedence 146
pointers, inspecting 702
scalars, inspecting 101
structures, inspecting 103
symbols 145
unions, inspecting 103
input SeeI/O
input boxes 21, See also dialog boxes
Action Expression 117
Address (breakpoints) 110, 114
Condition Expression 116
entering text in 25
Evaluate 93
Group ID (breakpoints) 174
history lists and 24-25
New Value 93
Pass Count 120
Result 93
Save To 70
Tab Size, TDW 69
Inspect command
Breakpoints window local menu 77171
Data menu 37, 92
Global pane local menu 75
Hierarchy Tree pane local menu 757
Inspector window local menu 104
Instructions pane local menu 86
Module window local menu 129
Object Data Field pane local menu 152, 155
Object Methods pane local menu 153
Object Type List pane local menu 150
Stack window local menu 78
Static pane local menu 76
Watches window local menu 97
Inspector windows 17, 22, 31, 98-105
arrays 100, 102

255

closing 31
compound data objects and 92, 105
global symbols and 75
language-specific programs and 98
local menus 104-105
local symbols and 76
object instance 156
object type 151-153
opening 26
additional 31
panes
object instance 154
object type 151
pointers 99, 102
problems with
character values in 99
multiple lines and 99, 102
procedures 1071
method 152
records 100
reducing number onscreen 105
scalars 98, 101
structures 103
unions 103
using
demo programs, in 202
tutorial 53
variables in 75
viewing contents as raw data bytes 98

INSTALL.EXE 9
installation 71

TDDEBUG.386 11
TDW 9
TDWINST utility and See TDWINST

built-in assembler and 178
divide, information about 81
execution history and 86-87
inspecting 86, See also Inspector windows
machine 178
executing 82, 83, 84
multiple assembly treated as single 83
referencing memory 180
viewing history of 86
watching See CPU window; Watches
window
Instructions pane, local menu 86
Integer Format radio buttons 69
integers
constants
Turbo Assembler 145
Turbo Pascal 743
formatting 69
viewing
decimal 147
hexadecimal 747
watching 96, See also Watches window
international sort order 2
interrupting programs
using Ctrl-Alt-SysRq 88
using message breakpoints
TDODEMO 212
interrupts
back tracing into 86
program See Ctrl-Alt-SysRq (program
interrupt key)
tracing into 84
Windows program, messages about 87
InvalidateRect function

instruction opcodes, illegal 81
Instruction Trace command 84

TDODEMO, in 219
InvalidateRgn function 219

execution history and 86 I/0
instructions See also Instructions pane ports
assembling 178 reading from 225
problems with 235, 236, 237 writing to 225

base and index registers 237, 241, 242 video 68
instruction mnemonics 236
invalid registers 237 K
size indicators 240 keys See also arrow keys; function keys; hot
target addresses 232 Y ys; function keys; 1o

keys
assigning as macros 67
cursor-movement 35

back tracing into 87
breakpoints and 121

256 Turbo Debugger for Windows User’s Guide

CPU window 179
dialog boxes 21
Help window 42
menu commands 20
keystrokes
assigning as macros 67
displayed 30
recording 242
problems with 222
restoring to previous 68
keywords, inline assembler
problems with 238
keywords in Help window 42

L

-1 option (assembler mode) 64, 174
labels, running programs to 83
tutorial 57
Language command 136
language-specific applications
assignment operators and 76
conventions 136
expressions and 135
Inspector windows and 98
using 16, 135
Layout option (save configuration) 70
layouts, restoring 36
1h2fp (type-cast symbol) 175
Line command 7130
line numbers 224
Code pane 181
generating scope override 137
moving to specific 130, 132
problems with, source files and current 129
lines
end of, problems with 243
multiple
problems with 99
lines, multiple, problems with 102
LineTo function
TDODEMO program 210
linked lists 105
list boxes 21, See also dialog boxes
Conditions and Actions (breakpoints) 115
incremental matching in 26
list panes, Pick a Module 127

Index

lists
choosing items from 35
global memory 166
local heap 168
modules, Windows 7168
Load Modules or DLLs dialog box 170
LOADLIBRARY function 172
local and static variables
selecting for Variables window 77
watching 77
local heap 168
local memory, Windows, listing 168
local menus 22-24, See also menus
accessing 23
Breakpoints window 1710-111
Global pane 75
Hierarchy Tree pane 151
Inspector windows 104-105
Instructions pane 86
Log window 125
Module window 129-131
Object Data Field pane 152, 154
Object Method pane 153, 156
Object Type List pane 150
Stack window 78
Static pane 76
viewing hot keys in 43
Watches window 97
Local Symbols command 60
local variables See also variables
breakpoints and 123
changing 76
global values and 75
inspecting 76, See also Inspector windows
problems with 243
viewing 28
in stack 27
specific instances of 75, 78
LocalAlloc function 168
Locals command 75, 78
location, breakpoints 107
LockData function 167
Log command (breakpoints) 124
log files 223
opening, problems with 230, 233
writing to, problems with 233
Log option (breakpoints) 718

257

Log To File command 233
Log window 27, 124-126

adding comments to 223

local menu 125

opening 124

window messages, sending to 165
Logging command 125

M

machine instructions 178
executing 82, 83, 84
macros 26
recording
keystrokes as 67
problems with 226, 242
removing 68
restoring to previous 68
saving 70
Macros command 67
Macros option (save configuration) 70
math coprocessor See numeric cOprocessors
memory
addresses 135
disassembler and 780
displaying 181
dump 183
entering 224
problems with 238
allocation
inspecting 79
problems with 789, 239
blocks 222
problems with 233
dump 29, 184
problems with 183
global Windows
information about 79
listing 166
handle
casting to far pointer 175
listing global memory 166
local, Windows, listing 168
locations, problems with 234, 240
read-only 231
references, formatting 147
running out of 240
watching 116

258

Windows global, selectors (accessing) 187
menu bar 19, 48
activating 19
menu tree diagram 44
menus 19-20
= (System) 19
activating 19
Breakpoints 109
commands See commands
Data 92-95
exiting 20
global 19
local vs. 23
Help 42
hot keys and 20
local See local menus
Options 67-70
pop-up 19
pull-down 719
Run 73, 82-84
program termination and 88
tutorial 47
View 27
Window 34, 50
message breakpoints
Get Info message about 80
message classes 163
Windows Messages window
adding to 163
deleting from 165
message log 27, See also log files
messages See also error messages
dialog boxes 221-227
program termination 80
window
debugging tips 165
setting breakpoints
TDODEMO 212
Windows
logging
to a file 165
to the TDW window 158
window handle, with 213
setting breakpoints 164
methods See procedures; object-oriented
programs
methods, dynamic virtual 205

Turbo Debugger for Windows User’s Guide

Methods command 155
Microsoft Windows
debugging programs (user interface) 1
debugging tips 87
Display Windows Info command 166
exit code returned to 81
functions
GlobalAlloc 166
GlobalLock 167
GlobalPageLock 167
InvalidateRect 2719
InvalidateRgn 279
LineTo 210
LOADLIBRARY 172
LocalAlloc 168
LockData 167
ReleaseCapture 217
SetCapture 217
UpdateWindow 219
initialization file (TPW.INI) 61
Languages setting 2
returning to 70
running programs from 63
selectors, accessing 187
switching applications, TDW and 63
Task List, TDW and 63
TDW, and 1, 157
window messages
logging
window handle, with 213
TDODEMO
WM_LBUTTONDOWN 216
WM_LBUTTONUP 216
WM_MOUSEMOVE 210, 216
WM_PAINT 218
WM_NCMOUSEMOVE 216
Windows Messages command 758
Mixed command 780
modes See display modes
Module command 239
Module window local menu 729
View menu 128
Module window 28, 128-131
local menu 729
opening 128
duplicate 129
source files and 128

Index

modules 4, 127, See also Module window
compiling 59
current
changing 170
overriding 136
loading 128, 226
new 129
problems with 131
referencing identifiers in other 137
scope override and 96
Pascal 140
setting breakpoints in other 123
tracing into 84
tracking 31
viewing 28, 128-131
duplicate 129
problems with 239, 242
source code in 224
Windows, listing 168
modulus operator, problems with 232
monitors See also hardware; screens
display swapping 64
monochrome 64
mouse
choosing menu commands 719-20
moving around in dialog boxes 21
setting breakpoints 108
support
disabling/enabling 65
online help 42
windows and 32-34
multi-language programs 10

N

nested classes, scope of 139

New Expression command
Inspector window local menu 705
Object Data Field pane local menu 155

new features for version 3.1 2

New Value input box 93

Next command See also Search command
File window local menu 133
Module window local menu 730
problems with 239

Next Pane command 35

Next Window command 34

nonprinting characters 99

259

return value 147
null-terminated character string 99, 102
numbering system, windows 34
numbers 94
decimal 69
floating-point See floating point, numbers
formatting 147
problems with 234
Turbo Assembler 146
Turbo Pascal 143
hexadecimal 69
real 143
scalar 142
numeric coprocessors
current state, viewing 29
registers, entering new values for 224
numeric exit code 81
Numeric Processor window 29
opening, problems with 238

(o)

Object Data Field pane 151
local menu 152, 154

Object Method pane 151
local menu 153, 156

object methods See procedures; object-oriented

programs
object modules 127
object-oriented programs
compatibility with Turbo Debugger 149
debugging 77
nested object structures 152
Self parameter and 94, 96
expressions, problems with 230
object instances
formatting 93
inspecting 156
object methods 78
inspecting 152
problems with viewing 232
tracing into 82
object types
inspecting 157-153
objects
hierarchy tree 150
scope override 140
stepping through single statements 83

260

Object Type List pane 150

local menu 750

objects, data See data, objects
ObjectWindows

applications, debugging 205
TApplication object 209

online help See also help

dialog boxes 21

OOP See object-oriented programs
opcodes, illegal instruction 81
Open command 89

Open Log File command 124, 125
operands 94, 233

instruction, memory pointers and 180
problems with 240

invalid 236

out of range 235

segment overrides and 231

size 181
problems with 240

operators 233

assignment 76, 97, See also assignment
operators

Turbo Pascal 144
binary 144
invalid 237
modulus, problems with 232
precedence 144

Turbo Assembler 146

options 67, See also Options menu

command-line See command-line options
display swapping 68

program execution 82

restoring defaults 70

saving 69

Options menu 67-70
Options option (save configuration) 70
Origin command 79

Module window local menu 131, 142

output See also1/0

display onscreen 68

—p option (mouse support) 65
panes

blinking cursor in 35
Breakpoints window 27, 110

Turbo Debugger for Windows User’s Guide

Code 180, See Code pane
CPU window 29
cycling through 179
Data 183, See Data pane
Execution History window 30, 86
Flags 181
Hierarchy window 150-151
highlight bar in 35
Inspector windows 31
object instance 154
object type 151
local menus and 22
moving between window 34
Numeric Processor window 29
recording current contents of 124
Register 181
Registers window 29
Selector 181
Stack 184
text See text panes
Variables window 28, 75
parameters 4, See also arguments
logging (breakpoints) 123
Self 94, 96
viewing, program-calling 77
parsing, TDW vs. Turbo Pascal 10
Pascal option (language convention) 136
Pascal programming language See Turbo Pascal
pass counts 108, 120
problems with 237
pasting and copying 37
Path for Source command 3, 69
paths, directory See directories
PChar variables, inspecting 99
Pick a Module list pane 127
pointers 147
compound data objects 95
- memory 136, 180
stack, current location 784
pointing at data objects 95
polymorphic objects 154
pop-up menus 19
ports, I/O 225
precedence, operators See operators
Previous command 42
Module window local menu 130
primary display 64, See also screens, swapping

Index

printers, problems with 222
procedures
calling 95
problems with
can’t evaluate 235
invalid argument list 235
executing 51
inspecting 701, 104
method See object-oriented programs
recursive, local data and 78
return values and current 95
returning from 83
stepping through 84
tracing into 50
viewing in stack 77
watching See Watches window
processors See 80x86 processors; CPU
program execution, interrupting 88
Program Reset command 85, 89
Ctrl-Alt-SysRq, and 88
TDODEMOB demo program 215
programs 197
accuracy testing 196
compiling 18
current location 745
CPU window 180
Inspector windows 75
Module window 78
problems with 85, 128
returning to 79, 131, 142
scope 142
overriding mechanism and 96
verifying 31
watching 76, 84, 127, See also Watches
window
current state 74
inspecting 74-81, See also Inspector
windows
debugging 16, 17, 59-63, 185-186, See also
debugging
current scope and 742
dynamic link libraries 169
planning for 70, 197
returning information on 79-81
starting TDW 60
with no debug information 84, 241
with out-of-date debug information 241

261

demo See demo programs watching See Watches window

execution See also programs, running Windows
controlling 73-90 debugging 1, 157
menu options 82 not loaded, problems with debugging 80
reversing 84, 86 stopping, messages about 80
problems with 87 unexecuted, problems with examining values
terminating See programs, stopping 81
fatal errors and 228 protected mode selectors, accessing 181
full output screen 31 pull-down menus 19
incremental testing 187
inspecting 22, See also Inspector windows Q

language options, overriding 136
loading 225, See also files, opening
dynamic link libraries 169

Quit command, TDW 70

new 89 R
problems with 239, 241 radio buttons 21, See also dialog boxes
symbol tables and 240 Action 117
message logs and 27 Changed Memory 121
modifying See programs, altering changing settings 21
multi-language 10 Condition 116
opening See programs, loading Display Swapping 68
patching, temporarily 178 Expression Language 136
recompiling 18 : Integer Format 69
recovering 87 Log 124
reloading 85, 89 Screen Lines 69
Windows and Ctrl-Alt-SysRq 88 Range command
restarting a debugging session 89 Inspector window local menu 704
returning from 50 Object Data Field pane local menu 155
returning to 79, 130 range errors 195
running 30, 73, 90, See also programs, read-only memory See ROM
execution README file 10
to breakpoints 52 READY indicator 25
command-line options and 90 RECORDING indicator 67
to cursor 50, 82 records, problems with 239, 243
at full speed 82 recursive procedures 75, 78
to labels 51, 83 reference line, dialog boxes 43
returning information on 79 Register pane 181
in slow motion 84 registers 98, See also Registers window
Windows, from 63 80386 hardware debugging 12
scope See scope CPU See CPU, registers
source code See code floating-point 224
source files and 128 problems with 241
stepping through invalid 237
problems with 80 segment 88, 147
tutorial 50 valid address combinations 237
stopping 88, See also breakpoints values, accessing 29
stopping (breakpoints) 122 Registers window 29, 184

262 Turbo Debugger for Windows User's Guide

panes 29
ReleaseCapture function 217
reloading programs 85
Windows and Ctrl-Alt-SysRq 88
Remove command
Breakpoints window local menu 117
Macros menu 68
Watches window local menu 97
Windows Messages window
message classes 165
window selection 162
Repaint Desktop command 36
repeat counts 146
resize box 33
restarting a debugging session 89
Restore Options command 37, 70
Restore Standard command 36
Result input box 93
return values 135
breakpoints, and 723
changing 97, 104
expressions 223
inspecting 95, See also Inspector windows
nonprinting characters 147
problems with 81, 238, 244
tracking 96
variables See variables
Reverse Execute command 86
reversing program execution 84, 86, See also
backward trace
problems with 87
Windows code 84
ROM, programs executing in 231
routines See also procedures
accessing 136
problems with 226
calling
problems with
invalid name 239
invalid parameters 236
debugging 127, 188
inspecting 78
variable with same name as 75
names, finding 28
recursive, local data and 75
stepping over 17
testing 196, 197

Index

viewing in stack 27, 77
Run command 82
execution history and 86
Run menu 73, 82-84
program termination and 88
running
programs See programs, running
TDW 63

S

sample programs See demo programs
Save Configuration check box 70
Save Options command 37, 69
Save Options dialog box 70
Save To input box 70
—sc option (ignore case), Turbo Debugger 65
scalar numbers 742, 223
scalar variables 99
scientific notation 745
scope 96, 137-142
breakpoint expressions 122
current 136, 142
accessing symbols outside 137
DLLs, and 7141
implied, evaluating expressions and 142
nested classes 139
overriding 743
tips
C, C++, Turbo Assembler 139
Pascal 141
problems with, inactive 231
Self parameter 94
templates 139
Screen Lines radio buttons 69
screens See also hardware; monitors
display modes See display, modes
layouts, restoring 36
lines per, setting 69
problems with
graphics display 36
writing to 68
startup, TDDEMOW 47
swapping 68
User See User screen
ScribbleWindow type (TDODEMO) 207
scroll bars 33
scrolling 32

263

Help screens 42
Inspector windows 54
menus 20
-sd option (set source directories) 65
Search command See also Next command
File window local menu 133
history lists and 24
Module window local menu 730
search paths, source files, for 3
secondary display 64, See also display,
swapping
segment
overrides, problems with 237
pointers to register 147
registers, program termination and 88
select by typing 26
SelectBlackPen method (TDODEMO)
bug, finding 212
bug, fixing 215
Selector command
Selector pane local menu 183
Selector pane 181
local menu 782
memory segments in 181
Self parameter 94
watching 96 .
Send to Log Window command (Windows
Messages window) 165
Set Message Filter dialog box 163
Set Options command (breakpoints) 770
SetCapture function 217
shortcuts See hot keys
Show command 77
Show Inherited command
Object Data Field pane local menu 153, 155
Object Methods pane local menu 153
side effects, splicing code (breakpoints) 177
Size/Move command 36
Smart option (display swapping) 68
software, requirements 3
sort order, international 2
source code See code
source files 3, See also files
language conventions and 136
loading 128, 227
problems with 242
search paths for 3

264

Source option (language convention) 136
stack 88, 178, See also Stack pane; Stack
window
current state 27, 77-78
pointer, current location 184
Stack command 75, 77
Stack pane (current stack pointer) 184
Stack window 27, 77-78
local menu 78
opening 75, 77
Standalone Debugging command 59
starting directory, changing 65
starting TDW 60
in assembler mode 64
command-line options and 77
startup code
dynamic link libraries 173
program, debugging 64
types of 172
startup screens, TDDEMOW 47
Static pane 75
local menu 76
static symbols, disassembler and 780
status line 471, 42
Step Over command 83
execution history and 86
stepping over routines 17
stepping through
procedures 84
programs, problems with 80
Stop Recording command 67
strings 147
byte lists and 742
character
null-terminated 7102
inspecting 99
quoted 133
problems with 243
searching for
File window, in 133
Module window, in 130
responding to prompt 225
searching for next
File window, in 133
Module window, in 130
Turbo Pascal 144
concatenation 143

Turbo Debugger for Windows User’s Guide

format control See format specifiers
text, searching for 24
truncated 93, 96
structures
changing 231
inspecting complicated data 92, 105
problems with 239, 243
subprograms See procedures; routines
support, technical 5
SVGA, support for in TDW 3
switches See command-line options
switching Windows applications, TDW and 63
symbol names, problems with 230
Symbol pane 28
symbol tables 136
creating 59, 241
dynamic link libraries, and 169
invalid 241
loading 226
problems with 240, 242
symbols 75, 135
accessing 137-142, 227
in other scopes 743
disassembler and 780
problems with 231, 242, 243
invalid 237
type information and 239
scope 137
Turbo Pascal 143
syntax
checkers, built-in 16
errors 16, 242
System Information box 79
System menu See = (System) menu

T

-t option (starting directory) 65
Tab Size input box 69
tabs, setting 69

problems with 243
TApplication object 209
Task List, Windows, TDW and 63
TD386 virtual debugger

setting breakpoints 117
TDCONFIG.TDW 37, 66

loading 64

Index

overriding 66
TDDEBUG.386 file 11
TDDEMOW 45
source files 46
tutorial 50
TDDEMOW.PAS 204
TDODEMO
CScribbleApplication object 209
CScribbleWindow object 208
InvalidateRect function 219
InvalidateRgn function 279
LineTo function 210
ScribbleWindow type 207
SelectBlackPen method
bug, finding 212
bug, fixing 215
UpdateWindow function 279
WMLButtonDown method
bug, finding 215
bug, fixing 211,217
CScribbleWindow 209
ScribbleWindow 207
WMLButtonUp method 208
WMMouseMove method 208
bug, finding 270
WMRButtonDown method 208
bug, finding 2718
bug, fixing 219
.TDS files, creating 10
TDW
logging window messages 158
window object, adding 161
window selection
adding 159
deleting 162
TDW.INI
DebuggerDLL entry 3
installation settings 12
VideoDLL entry 3
TDWIN.DLL 3
TDWINST 11
configuration file
and 66
technical support 5
templates
scope of 139

265

text 69
entering
active windows and 32
in input boxes 25
incremental matching 26
in log 223
searching for 242
strings, searching for 24
text files 132
text modes See display, modes
text panes 223, 226
tiled windows 49
time delays, setting 84, 222
Toggle command
Breakpoints menu 120
Toggle command 109
TPW.INI 61
Trace Into command 82
continuous tracing 84
execution history and 86
programs executing in ROM and 231
tracepoints 107, See also breakpoints
tracing 17, Seealso Trace Into command
backward See backward trace
continuous (animation) 84, 222
execution history and 85
into interrupts 84
into procedures 50
program termination, and 80
Self parameter and 94, 96
Tree command 150
Turbo Pascal See also obj
arrays 55
inspecting 100
bugs specific to 189-196
code
tracing into 50
command-line options 60
compiler directives
$B option 191, 196
$R option 195
constants 743
data
inspecting 98-101
types 53
compound 55

266

demo programs See demo programs
dynamic virtual methods 205
expressions 143-145
entering in dialog boxes 56
functions 144, 235
returning from 193
operators 143
precedence 144
PChar variables, inspecting 99
pointers 190
inspecting 99
procedures 144, 235
executing 50
returning from 50
range-checking 195
records, inspecting 100
scalars, inspecting 98
source code 193
strings 144
concatenation 743
symbols 143
local 60
units See also modules
override syntax 140
variables 190, 191
decrementing 194
inspecting 53
problems with 244
return values 55, 96
watching 52
versions compatible with TDW 3
WINCRT unit 45
type conversion 76, 97
memory handle to far pointer 175
problems with 237, 243
typecasting See type conversion
types
data See data, types
object See objects, types

U

unary operators 144

Undo Close command 36

union members, problems with 239
units, scope override and 7140

Until Return command 83
UpdateWindow function 279

Turbo Debugger for Windows User’s Guide

User screen 31, 68

User Screen command 37

utilities, disk-based documentation for 10
UTILS.TDW file 10

\'

/v option (TPCW) 60
variables 28, See also Variables window
accessing 136
problems with 235
debugging 188
DLLs, accessing in 141
evaluating 92-94
global See global variables
inactive functions and 2317

inspecting 31, 92, 98-103, 105, 226, See also

Inspector windows
function with same name as 75
in recursive procedures 78
language conventions and 136
local See local variables
logging (breakpoints) 123
names 96
finding 28
problems with 239
pointing at 95
private 96
program termination and 88
return values 17
inspecting 37
problems with 75, 99
scalar, character values and 99
scope override 138, 140
uninitialized 788
updating 97
viewing 74-77
in recursive routines 75
watching 28, 95, 96, 223, See also Watches
window
Clipboard, and 40
Variables command 75
Variables window 28, 74-77
opening 75

VGA See also graphics adapters; video adapters

line display 69

Index

video adapters See also graphics adapters,
hardware
display options 69
problems with 244
Super VGA support 3
supported 228, 229
TDW requirements 2
unsupported driver 228
Video Graphics Array Adapter See VGA
VideoDLL, TDW.INI entry 3
videos See monitors; screens
View menu 27
virtual methods, dynamic 205
virtual methods table (VMT) 154

w

Watch command
Global pane local menu 76
Module window local menu 129
Static/Local pane local menu 77
Watches window local menu 97
Watch dialog box, global symbols and 76
Watches command 96
Watches window 28, 96-97
local and static symbols and 77
local menu 97
opening 96
using 203
tutorial 52
watchpoints 17, 107, See also breakpoints
Clipboard, and 40
reloading programs and 89
tutorial, in 52
wildcards
DOS 131, 243
searching with 130
WINCRT unit 45
WINDEBUG.DLL 3
window handle, logging windows messages
213
Window menu 50
opening 34
window management and 34
window messages
breakpoints
Get Info message about 80
setting 164

267

logging
to a file 165
to the TDW window 158
window handle, with 213
setting breakpoints
TDODEMO 212
window object

adding to TDW Windows Messages window

161
Window Pick command 34
window selection

adding to TDW Windows Messages window

159
deleting from TDW Windows Messages
window 162
Windows See Microsoft Windows
windows 17, 26-37
active 32
returning to 20
bottom line in 42
Breakpoints 27, 110-111
Clipboard 30
closing 36
temporarily 36
CPU See CPU window
Dump 29, 184
Execution History 30
opening 86
File 28
opening 130
Hierarchy 749
Inspector See Inspector windows
layout, saving 37, 70
local menus and 22
Log 27, 124, 124-126
Module See Module window
mouse support 32-34
moving 35
multiple 34, 130, 134
moving among 34
Numeric Processor 29
problems with 238
opening
duplicate 31
new 27
panes See panes
problems with 31, 239

268

current program location and 85
recovering last closed 36
reducing to icon 33, 36
Registers 29, 184
repainting 36, Seealso display updating
resizing 33, 35
single-line borders and 36
Stack 27, 77-78
opening 75
tiled 49
tutorial 49
Variables 28, 74-77
opening 75
Watches See Watches windows
Windows Messages 30
Windows Information dialog box 166
Windows Messages window -
for an ObjectWindows program 167
standard Windows application 158
WM_LBUTTONDOWN message 216
WM_LBUTTONUP message 216
WM_MOUSEMOVE message 216
capturing 217
receiving, TDODEMO, in 2710
WM_NCMOUSEMOVE message 216
WM_PAINT message
erase-screen bug 218
WMLButtonDown method (TDODEMO)
bug, finding 215
bug, fixing 211,217
CScribble Window 209
Scribble Window 207
WMLButtonUp method (TDODEMO) 208
WMMouseMove method (TDODEMO) 208
bug, finding 210
dynamic virtual method, as a 206
WMRButtonDown method (TDODEMO) 208
bug, finding 218
bug, fixing 219
word 181
formatting 183

Z

zoom box 33
Zoom command 36
zoom icon 33

Turbo Debugger for Windows User’s Guide

	03007243 ================.tif
	03007244.tif
	03007245.tif
	03007246.tif
	03007247.tif
	03007248.tif
	03007249.tif
	03007250.tif
	03007251.tif
	03007252.tif
	03007253.tif
	03007254.tif
	03007255.tif
	03007256.tif
	03007257.tif
	03007258.tif
	03007259.tif
	03007260.tif
	03007261.tif
	03007262.tif
	03007263.tif
	03007264.tif
	03007265.tif
	03007266.tif
	03007267.tif
	03007268.tif
	03007269.tif
	03007270.tif
	03007271.tif
	03007272.tif
	03007273.tif
	03007274.tif
	03007275.tif
	03007276.tif
	03007277.tif
	03007278.tif
	03007279.tif
	03007280.tif
	03007281.tif
	03007282.tif
	03007283.tif
	03007284.tif
	03007285.tif
	03007286.tif
	03007287.tif
	03007288.tif
	03007289.tif
	03007290.tif
	03007291.tif
	03007292.tif
	03007293.tif
	03007294.tif
	03007295.tif
	03007296.tif
	03007297.tif
	03007298.tif
	03007299.tif
	03007300.tif
	03007301.tif
	03007302.tif
	03007303.tif
	03007304.tif
	03007305.tif
	03007306.tif
	03007307.tif
	03007308.tif
	03007309.tif
	03007310.tif
	03007311.tif
	03007312.tif
	03007313.tif
	03007314.tif
	03007315.tif
	03007316.tif
	03007317.tif
	03007318.tif
	03007319.tif
	03007320.tif
	03007321.tif
	03007322.tif
	03007323.tif
	03007324.tif
	03007325.tif
	03007326.tif
	03007327.tif
	03007328.tif
	03007329.tif
	03007330.tif
	03007331.tif
	03007332.tif
	03007333.tif
	03007334.tif
	03007335.tif
	03007336.tif
	03007337.tif
	03007338.tif
	03007339.tif
	03007340.tif
	03007341.tif
	03007342.tif
	03007343.tif
	03007344.tif
	03007345.tif
	03007346.tif
	03007347.tif
	03007348.tif
	03007349.tif
	03007350.tif
	03007351.tif
	03007352.tif
	03007353.tif
	03007354.tif
	03007355.tif
	03007356.tif
	03007357.tif
	03007358.tif
	03007359.tif
	03007360.tif
	03007361.tif
	03007362.tif
	03007363.tif
	03007364.tif
	03007365.tif
	03007366.tif
	03007367.tif
	03007368.tif
	03007369.tif
	03007370.tif
	03007371.tif
	03007372.tif
	03007373.tif
	03007374.tif
	03007375.tif
	03007376.tif
	03007377.tif
	03007378.tif
	03007379.tif
	03007380.tif
	03007381.tif
	03007382.tif
	03007383.tif
	03007384.tif
	03007385.tif
	03007386.tif
	03007387.tif
	03007388.tif
	03007389.tif
	03007390.tif
	03007391.tif
	03007392.tif
	03007393.tif
	03007394.tif
	03007395.tif
	03007396.tif
	03007397.tif
	03007398.tif
	03007399.tif
	03007400.tif
	03007401.tif
	03007402.tif
	03007403.tif
	03007404.tif
	03007405.tif
	03007406.tif
	03007407.tif
	03007408.tif
	03007409.tif
	03007410.tif
	03007411.tif
	03007412.tif
	03007413.tif
	03007414.tif
	03007415.tif
	03007416.tif
	03007417.tif
	03007418.tif
	03007419.tif
	03007420.tif
	03007421.tif
	03007422.tif
	03007423.tif
	03007424.tif
	03007425.tif
	03007426.tif
	03007427.tif
	03007428.tif
	03007429.tif
	03007430.tif
	03007431.tif
	03007432.tif
	03007433.tif
	03007434.tif
	03007435.tif
	03007436.tif
	03007437.tif
	03007438.tif
	03007439.tif
	03007440.tif
	03007441.tif
	03007442.tif
	03007443.tif
	03007444.tif
	03007445.tif
	03007446.tif
	03007447.tif
	03007448.tif
	03007449.tif
	03007450.tif
	03007451.tif
	03007452.tif
	03007453.tif
	03007454.tif
	03007455.tif
	03007456.tif
	03007457.tif
	03007458.tif
	03007459.tif
	03007460.tif
	03007461.tif
	03007462.tif
	03007463.tif
	03007464.tif
	03007465.tif
	03007466.tif
	03007467.tif
	03007468.tif
	03007469.tif
	03007470.tif
	03007471.tif
	03007472.tif
	03007473.tif
	03007474.tif
	03007475.tif
	03007476.tif
	03007477.tif
	03007478.tif
	03007479.tif
	03007480.tif
	03007481.tif
	03007482.tif
	03007483.tif
	03007484.tif
	03007485.tif
	03007486.tif
	03007487.tif
	03007488.tif
	03007489.tif
	03007490.tif
	03007491.tif
	03007492.tif
	03007493.tif
	03007494.tif
	03007495.tif
	03007496.tif
	03007497.tif
	03007498.tif
	03007499.tif
	03007500.tif
	03007501.tif
	03007502.tif
	03007503.tif
	03007504.tif
	03007505.tif
	03007506.tif
	03007507.tif
	03007508.tif
	03007509.tif
	03007510.tif
	03007511.tif
	03007512.tif
	03007513.tif
	03007514.tif
	03007515.tif
	03007516.tif
	03007517.tif
	03007518.tif
	03007519.tif
	03007520.tif
	03007521.tif
	03007522.tif

